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A MESH GRADIENT TECHNIQUE FOR

NUMERICAL OPTIMIZATION

ABSTRACT

by

EDWARD ALLEN WILLIS, JR.

This paper deals with a class of successive-improvement optimi-

zation methods in which directions of descent are defined in the

state space along each trial trajectory. The given problem is first

decomposed into two discrete levels by imposing mesh points. Level I

then consists of running optimal subarcs between each successive

pair of mesh points. For normal systems, these optimal two-point

boundary value problems can be solved by following a routine pre-

scription if the mesh spacing is sufficiently close. A spacing cri-

terion is given. Under appropriate conditions, the criterion value

depends only on the coordinates of the mesh points, and its gradient

with respect to those coordinates may be defined by interpreting the

adjoint variables as partial derivatives of the criterion value

function. In Level II, the gradient data is used to generate im-

provement steps or search directions in the state space which satisfy

the boundary values and constraints of the given problem. The family

of feasible varied trajectories thus constructed converges to the

"nearest" locally-optimum trajectory, if any such exist.
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1. SUMMARY

This paper deals with a class of successive-improvement optimiza-

tion methods in which directions of descent are defined in the state

space along each trial trajectory. The given problem is first decom-

posed into two discrete levels by imposing mesh points. Level I then

consists of running optimal subarcs between each successive pair of

mesh points. For normal systems, these optimal two-point boundary

value problems can be solved by following a routine prescription if

the mesh spacing is sufficiently close. A spacing criterion is

given. Under appropriate conditions, the criterion value depends

only on the coordinates of the mesh points, and its gradient with

respect to those coordinates may be defined by interpreting the ad-

joint variables as partial derivatives of the criterion value func-

tion. In Level II, the gradient data is used to generate improvement

steps or search directions in the state space which satisfy the

boundary values and constraints of the given problem. The family of

feasible varied trajectories thus constructed converges to the "near-

est" locally-optimum trajectory, if any such exist.

This approach reduces the typical deterministic optimal control

problem to an exercise in the classical theory of maxima and minima.

It also leads to a class of apparently novel algorithms for optimal

- 1 .



trajectory computations. These differ as to their ultimate rates of

convergence and computational sophistication, but all share the same

basic operation - namely, decomposition and variation of the state

trajectory itself. This derives maximum benefit from the initially-

given constraint and boundary value information. It is also useful

for solving computationally-unstable problems (where the integration

interval is long compared to state or adjoint system time constants),

by taking the mesh-spacing small enough. Therefore, the present

class of methods prove relatively effective when applied to unstable

problems or problems with numerous boundary values and constraints,

as illustrated by several examples.



2. INTRODUCTION

Many important physical processes are describable by systems of

deterministic ordinary differential equations, Since there are often

more variables than equations, it makes sense to use some of the ex-

tra degrees of freedom as control variables - in order to optimize a

criterion of merit and to meet the boundary values prescribed for the

process. Thus (with many technicalities deferred until the formal

"statement of the problem" in Section 2.1) the systems studied may

typically have the form

minimize J = tminimize J = j fo(X(t),u(t),t)dt

t0

with

t) = f(x(t) ,u(tt)

subject to various boundary conditions and constraints on the state

vector x(t) and the control vector u(t).

From a mathematical viewpoint, modern theories, such as, L. S.

Pontryagin's Maximum Principle (ref. 137; references are listed

alphabetically in Chapter 6, Bibliography) give enough "necessary

conditions" to define solutions to most practical problems. Unfor-

tunately, it is not always easy to implement these conditions in

-3-
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practical numerical studies. Experience indicates that the difficul-

ties experienced in conducting numerical studies are usually due to

one or both of the following causes:

(a) Numerical instability results, when the integration interval

exceeds the dominant state or adjoint time constant,in computer over-

flows, inordinate sensitivity of final condition to small perturba-

tion of the initial data, etc. That this is a widespread problem may

be inferred by recalling that for a simple linear system, each stable

state equation will give rise to an unstable adjoint equation, and

conversely.

(b) Numerous constraints on the state trajectory (c.f. fig.

2-1), involving point or path, equality or inequality relations, nor-

mally entail the enforcement of additional relations, such as the

"jump" and "corner" conditions or appropriate forms of the transver-

sality conditions. Typically, one must introduce and determine an

extra set of auxiliary multipliers for every intermediate constraint,

thus adding to the computational burden. Philosophically, one would

expect the presence of intermediate constraints to help, not

hinder the optimization process by reducing the range and dimension

of the space to be searched.

These factors, which are greatly compounded by the nonlinearity

and high dimensionality typical of practical problems, are respon-

sible for phenomena such as numerical instability and multiple or

nonexistent solutions which seriously hinder the effective conduct
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of numerical studies. With this comment as background, the general

problem to be considered here may be stated in the following form.

2.1 Problem Considered

Minimize the following criterion function over u and B:

tf

J = 2 f0(xt),u(t),B,t)dt + P.V.C. (1)

where the abbreviation P.V.C. stands for point-value contributions

(to be defined later), the state variables

x(t) E RN for all t e 9' = [t
0
,t

f]

are defined by

x(t) = t(x(t),(t) ,B,t) (2)

the admissible controls are defined by

u(t) C Q C R for all t e X (3)

and B R L is a vector of constant (but adjustable) design

parameters.

In addition there are terminal- and intermediate-point equality

constraints, i.e.,

x(t
k

) A x
k

k(X; t) (4)

where tO < tl ... t
K

= tf and the "k are nk dimensional

smooth manifolds (O < nk < N).
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Finally, state-variable inequality constraints may also apply,

i.e.,

x(t) i int r (5)

where r c RN represents one or more excluded regions of state

space.

2.2 Existing Methods of Solution

Necessary conditions and sufficient conditions for basic forms

of the problem are well in hand, as may be judged from the appear-

ance recently of comprehensive texts such as Athans & Falb (ref. 4),

Bryson & Ho (ref. 24), and Lee & Markus (ref. 108). Several basic

computational approaches are presently available for producing num-

erical solutions in specific cases. Since recent surveys (e.g.,

refs. 3, 54, 96, 132 and 149) display literally hundreds of individ-

ual contributions, the present discussion will be limited to broad

categories, with details left to the indicated references.

Conceptually, the most powerful method now available is Dynamic

Programming. Although a valuable theoretical tool, its computational

application have been very limited due to extremely high storage re-

quirements. Hence, despite the appearance of D.P. algorithmswith de-

creased storage requirements (refs. 97 and 98), it is felt that iter-

ative successive-improvement are more promising as a class.

First-order schemes such as Kelley's control iteration (ref. 81)

are perhaps useful for generating initial guesses for higher ordered

schemes. Unfortunately, they converge slowly in the neighborhood of

the solution and tend to produce inaccurate adjoint trajectories.

References are listed and categorized in Chapter 6, Bibliography.



These disadvantages, which are pointed out and discussed in connec-

tion with Figures 5 and 6 of reference 100, render first-order tech-

niques generally unsuitable for the present needs, and they will not

be further discussed.

Newton-type methods achieve quadratic convergence in the neigh-

borhood of the true solution, by making use of linear system theory.

The Transition Matrix approach (c.f. ref. 24) is one example of a

Newtonian (second order) boundary iteration technique. The major

disadvantage of this method is its tendency toward numerical instab-

ility. As previously explained either the state or adjoint equations

are necessarily unstable. This can result in the state and adjoint

variables being of entirely different orders of magnitude (e.g., eat

-at
vs e ) - which implies the transition matrix is ill-conditioned -

when the time interval significantly exceeds the system's dominant

time constant.

To reduce numerical-instability problems, the "backward-sweep"

approach can be applied to both boundary-iteration (ref. 24) and

control-iteration (ref. 123) techniques. As applied to boundary

iteration, this entails integrating the state, adjoint and Ricatti

matrix equations backwards from assumed terminal conditions. Term-

inal values are then adjusted by iteration so that the desired ini-

tial conditions are achieved. The advantage of this approach is

that the adjoint equations are being integrated in the "stable" di-

rection. The Ricatti equation may also be tested for system "nor-

mality" and the presence of conjugate points (c.f. Section 8.2,
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Appendix). On the other hand, even though the stability problem may

be somewhat eased in some cases, it is by no means eliminated. This

is because the canonical equations necessarily contain both stable

and unstable components and these are merely interchanged by revers-

ing the sense of integration.

When control rather than boundary-value iteration is used, the

state equations are integrated forward using an assumed control his-

tory and the resulting trajectory stored; the adjoint and Ricatti

matrix equation are then integrated backwards to determine an im-

proved control history which is both more nearly optimal and more

nearly feasible. Stability is greatly improved because the state

and adjoint equations are decoupled during any one pass. Neverthe-

less, a fairly good initial guess is still required for the entire

control history, and (short of first making use of a lower-order

scheme) there is no obvious or systematic way to obtain one. In ad-

dition, this technique requires both forward and backward integration

passes with storage of the entire state and adjoint trajectories and

Ricatti matrix histories. It requires fixed-step-size integration

schemes which, in general, are less efficient than variable step size

schemes. Finally, the process does not inherently meet all boundary

conditions and an additional multiplier must be determined for each

"hard" terminal constraint. (i.e., one which must be satisfied ex-

actly). On balance, this approach is rather attractive for free-

terminal problems but rapidly loses it appeal when "hard" con-

straints are added.
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Finally, the best known of the Newtonian functional approxima-

tion techniques is that of Quasilinearization (ref. 14). The proce-

dure is to simply linearize the canonical equations around trial

state/adjoint trajectories. The following linear perturbation equa-

tions

6xt VV i) xi 6xi

= a (7)

+(t) = xi(t) + 6x.(t); (t) = + 6i(t) (8)6$i(t)

are solved itteratively- until a suitable norm, e. g., max 6x (t)

tidy

becomes "sufficiently" small. The procedure unfortunately is subject

to instability whenever the integration interval significantly ex-

ceeds the dominant time constant and also is-dependent on having a

good initial guess for both the state and adjoint trajectories. The

technique also requires storage of the entire state-adjoint trajec-

tories and is not adaptable to efficient, variable-step-size numeri-

cal integration routines.

From the preceding discussion it may be concluded that none of

the existing methods seems to be specifically addressed to the most

general, unstable, and highly constrained form of the problem. More-

over, when nonlinear effects are added to the previously-mentioned

instability and constraint problems (c.f. Fig. 2-1), it is readily

understandable why computational efficiency is still a major consid-

eration despite the capabilities of modern computer facilities.
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State variable inequality constraints or intermediate-equality con-

straints are particularly troublesome in that they entail additional

mathematical conditions and may require a laborious "patching to-

gether" of free and constrained arcs. Philosophically, it would

seem that the additional a priori information represented by the

state constraints should be usable to help, not hinder, in computing

the solution.

2.3 The Mesh-Gradient (MG) Approach

Based on the preceding remarks, the present approach was de-

signed with two primary objectives in view: (a) to take maximum ad-

vantage of the a priori data given about the problem in the form of

intermediate state-variable constraints; and (b) to eliminate or

avoid the problem of numerical instability.

In essence, the present approach relies upon the principle

of decomposition to divide an intractable given problem into nested

levels of individually-manageable subproblems. Specifically the pro-

cedure is to impose a set of mesh points {
+
;tk} leading from (x0 ;t0)

to (XK;tK), certain members of which belong to the constraint mani-

folds Tj. This resolves the problem into two levels.

Level I: Select an initial mesh, {(x 
0
;t0),6;t),(xl;tl) .... (K;tK)}

and (with the mesh-points held fixed) solve the resulting sequence

of Two-Point Boundary Value Problems (TPBVP) using any suitable nu-

merical optimization technique. These solutions may be readily



- 12 -

computed by taking closely-spaced mesh-points; this avoids the sta-

bility problems often associated with initial-value methods, and re-

sults in an initial feasible trajectory satisfying the given phys-

ical boundary values and constraints.

Level II: Optimize the mesh-point locations so as to minimize

J, using any suitable mathematical programming technique. Note that

here the physical constraints and boundary values merely reduce the

range and/or dimensionality of the search.

2.4 Comments

(a) If a certain controllability condition is satisfied, numeri-

cal instabilities may always be avoided in Level I by taking a suffi-

ciently close mesh spacing. This is an important point, because

Level I is nested inside Level II and must operate through many

cycles for every step in the Level II search. Thus, it is essential

for the present method to have a reliable and efficient method of

solving short subarc TPBVP's.

(b) If the TPBVP solutions are optimal, then J is a function

of the mesh-point coordinates only. The gradient of J may be read-

ily defined in terms of the adjoint-variable and Hamiltonian-function

discontinuities at each mesh point. Furthermore, the Hessian

matrix may be derived from the subarc transition matrices. Thus,

Level II consists of a conventional, well-posed mathematical program-

ming problem for which a very satisfactory and complete theory is

available - c.f. Fiacco & McCormick (ref. 45).
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(c) The selection of an initial set of mesh points is to some

extent a matter of judgment. As a minimum, the initial and final

points, plus one point for every junction with a constraint mani-

fold, must be included. Additional unconstrained points may be in-

serted to satisfy the mesh-spacing criterion for stability (to be

developed later).

(d) The tractability of closely spaced TPBVP's depends on a

controllability assumption - namely, that each mesh point is in fact

reachable from the preceding one. If this is not true in general

(as is apt to be the case with fixed-time, bounded-control prob-

lems), then care must be used to avoid the appearance of-abnormal

(i.e., unfeasible) subarcs. In many cases, the TPBVP's may be re-

formulated in terms of quantities that are attainable with the avail-

able control. This would typically involve dropping redundant or un-

controllable coordinates, substituting iteration parameters, etc.

See reference 115 for instance. Otherwise, penalty functions may be

used to weigh temporarily-unavoidable boundary value or control-

constraint violations.

(e) The Level I and Level II operations individually make use

of established techniques and theories. The novelty and contribution

of the Mesh-Gradient approach consists in combining these techniques

in such a way as to avoid numerical instabilities and to make effec-

tive use of the constraint data specified for the problem. Whereas,

prior techniques may be broadly classified as involving boundary
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iteration, control iteration or successive approximation (i.e., quas-

ilinearization), the characteristic feature of the present approach

is iteration in the state space.

(f) This dissertation is organized in the following manner.

The basic Mesh-Gradient TeChnique is presented in Chapter 3 (with

all but the most essential of the supporting material deferred to

Chapters 8 and 9). Four computational examples are treated in de-

tail in Chapter 4, while conclusions and recommendations for further

study are given in Chapter 5. References are listed and categorized

in Chapter 6, main symbols are presented in Chapter 7, and the re-

maining Chapters are Appendices.



3. THE MESH-GRADIENT TECHNIQUE

The major steps comprising the "Mesh-Gradient" method are pre-

sented in this chapter. For the sake of clarity, only its character-

istic features and underlying assumptions are discussed here, with

many derivations and other lengthy details deferred until Chapters 8

and 9.

As applied to Problem 2.1, the' technique begins by introducing

a set of mesh points {xk;tk}, which in some sense lead from the

given initial conditions to the desired final conditions. The

points are ordered, so that t
O
< t1 < tk tk tK tf

and initially arranged to lie along the analyst's best guess at the

optimal trajectory. The collection of admissible mesh points in RK

is denoted by X pp; other main symbols are listed in Chapter 7. One

member of X belongs to each constraint manifold, and additional,
PP

unconstrained points may be introduced for computational convenience.

This defines a sequence of two point boundary value problems (TPBVP)

connecting adjacent pairs of mesh Points. The objective of Level I

is that each TPBVP solution will be optimal. When this holds true,

it follows that the criterion value J is a function of the mesh

point coordinates and times only, and its gradient with respect to

- 15 -
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these coordinates is well-defined. The notation Vx( ) will denote

the gradient with respect to feasible direction in I . Thus, the
pp

objective of Level II is to achieve that J is minimal with re-

spect to feasible variations in I , i.e., that V J = O and that

VX[VzJ] is positive definite.

3.1 Level I - Subarc Solutions

As mentioned in Chapter 2 it is crucial for the present tech-

nique to have an efficient, reliable, hopefully almost fool-proof

method of solving TPBVP's. This is because Level I is nested inside

Level II and must operate through a full cycle (i.e., solve K

TPBVP's) for every "function-evaluation" in the Level II search. In

this section we will discuss the chosen technique, and subsequently

the major conditions and restrictions that apply to it.

For smooth, well-behaved functions of practical engineering in-

terest (c.f., the standard definitions and assumptions listed in

Section 8.1.1) it is well known that an optimal control and its re-

sponse must satisfy the Maximum Principle (c.f., Sections 8.1.2 and

8.1.3), an appropriate form of the transversality condition (Section

3.2.1) and also the convexity or strengthened Legendre-Clebsch con-

dition, the normality condition and the Jacobi or No-Conjugate-

Point condition (c.f., Sections 8.2.1-8.2.3). From henceforth it

is assumed that these conditions apply to individual subarcs.

3.1.1 The Transition Matrix Algorithm

While many numerical techniques are available for solving two

point boundary value problems, Newtonian iteration based upon linear
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perturbation theory (the transition matrix algorithm or TMA) is

used here because of its efficiency and because the associated

second-partial matrices can also be used in the upper level calcu-

lations. Specifically, after introducing the usual adjoint vari-

ables (~(t)) and Hamiltonian (t3) and.using the maximum principle to

eliminate the control variables, the subarc problem may be expressed

in the canonical form

x(t) = a = (tw, (t),S,t)

t)( = - v = g(x(t),,(t),,t)(

X(tk) AXk e Sk and X(tk+l) A Xk+l Zk+1

where the XkCe Xp, with k = 1,2,* .- K.

With assumed initial values of ~(tk), Eqs. (1) may be integra-

ted forward to obtain end points x*(tk+l)(see Fig. 3-1) which in

general differ from the desired points xk+l, and contributions Jk

to the criterion value. Relative to the given initial points xk

and the actually obtained final points x*(tk+l), each Jk is at

least stationary in F . Moreover, it will be shown that Jk de-
sa

pends upon its end-point coordinates only, and that (with suitable

normalization) the partial derivatives of the integral contribution

to Jk with respect to x(tk) and x*(tk+
l
) are given by

If Q is unbounded, it is generally possible (under the hypotheses
of Section 8.1.1) to solve for u as an explicit, differentiable
function of x, T, ~ and t. If Q is bounded, however, u may
depend implicitly on some components of i, i.e., via the location
of switching boundaries. In that case, some elements of the Jacob-
ian matrices in Eqs. (6) and (7) below will be represented by im-
pulse functions, and special techniques must be used to integrate
the transition matrix Eqs. (4).
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Final stage: Subarcs have con-
verged to mesh-point boundary
values

.

--

i,.

<~P-~C~4~ I rF Initial stage: Fi.st-trial subarcs
resulting from $-values esti-
mated by judgment.

Ti me

FIGURE 3-1. - INITIAL AND FINAL STAGES IN THE LOWER
LEVEL CYCLE.
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Di ~~~kk
+ =(tk) k _ax(tk)fI -t

and (2)

Dik +

ax* (tk+l)

where superscripts + and - denote left and right hand limits, re-

spectively. When P.V.C. terms are present in J, Eq. (2) must be ex-

tended to include (PVC)k and (PVC)k+l'

ax(tk ) ax* (tk+l)
respectively.

The required values of (tk), which cause x(tk+l) to coincide

with the desired point xk+l, are found by linearizing Eqs. (1)

around the trajectory ensuing from a previous (j th) estimate j(tk)

In the customary way this yields the transition matrix and perturba-

tion system.

+ k+ 1

tk it+

tk c
I Arc k contributes

an amount Jk to the criterion value

For the present purposes it will be convenient to partition the

transition matrix O(t0 ;t) into 4 N x N blocks, i.e.,

(D(t0;t) = (3)

00;
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With

t
0
;t i t - t0 ;t

and

F ~] = I (the 2N x 2N identity matrix) (5)

D to;t
O

where a, y, y, and 6 are NxN Jacobian matrices formed by differ-

entiating and g with respect to x and in turn, namely

a = , = , , = a, ag (6)

ax a ax ax

Recalling the canonical definitions of 2 and g (c.f., Section

8.1.2), the Jacobians may be expressed (component-wise) as

aij axiaj 8ij ayia 

(7)
a 2a ,2

=ij - ax.ax ij aax

Because of the continuity and differentiability of the original func-

tion ?(x,u,~,t), it may be observed that S and y are symmetric,

i.e.,

T T
6 = 7 Y= y

and also that (8)

6 T- 

Thus, the Jacobians entail 2N + N independent quantities rather

than 4N2 .
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Then, computing D(t0 ;t) as usual and adopting the notation

that A(tk;tk+l) = Ak, etc., the solution of the perturbation system

may be written as

t X(tk+l iteration k j - tk

Finally, assuming that Bkl exists, we may solve for 6+(tk) with

6x(tk) = 0, yielding an increment

6j (tk) = Bk xj(tk+l) (10)

i

which (for linear dynamics) would zero the predicted terminal error

6xj+l (tk + l
).

3.1.2 Comments

(1) It is shown in Section 8.3 that the sequence

~O (t k) arbitrary

-. -. -t (11)
j+l (tk) = (tk) + 6~j(tk)

converges either quadratically or not at all to the solution of (1).

(2) Moreover, the assumptions of Section 8.1.1 imply that except

in the presence of an abnormal or conjugate point trajectory, conver-

gence can always be obtained if adjacent partition points are prop-

erly arranged and sufficiently close .together (briefly, this means

that each point is to be attainable from the preceding one and that

the interval [tk;tk+l] does not much exceed the dominant local time-

constant of the canonical system);
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(3) The results of section 3.2.1 below imply that,under the

normalization implied in Eq. (2), the blocks of the transition matrix

= [ may be interpreted as

Ak(t) = +
Dx(tk)

a+~~~~(t~~ ~(12)
a(tk+l)

k ax(tk)

(tk+l )

aCk (tk)

for all t a.

(4) The existence and proper interpretation of the partial de-

rivatives indicated in this section and below depend upon (a) the

continuity, differentiability and convexity properties listed in

Section 8.1.1, and (b) the non-singularity of Bk . The latter does

not necessarily follow from the former, however, and the conditions

under which Bk or its equivalent exists are further discussed ink

the next section.

To summarize, the Transition Matrix Algorithm or TMA comprises

the following steps:

(a) o0(tk) arbitrary

(b) solve Eqs. (1) to (9)
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(c) Compute the linear increment 6 j(tk) and correct j(tk)

per Eqs. (10) and (11).

(d) Iterate steps (a)-(c) until a suitable error norm, say

+T
6x (tk+l) Q6xj(tk+l) (12)

(where Q is a positive definite matrix) becomes suf-

ficiently small.

For a TPBVP, this scheme requires the forward integration of the

2N cononical equation plus the 4 sets of N x N matrix equations to

define A, B, C and D. It may be recalled from Eqs. (7) that

a J is symmetric so that only 2N
2
+ N terms must be computed.

There is no need to store the trajectory histories. At the final

time the N x N matrix B must be inverted, and used to compute the

derived matrices E, F, G and H which will be defined in Section

3.2. As shown in the Appendix (8.2.4)these matrices collectively con-

tain only 2N
2
+ N independent components. E, F, G, and H may be

stored in the same locations used for A, B, C, and D, and used

prior to the next iteration to compute quantities that are of inter-

est for Level II.

3.1.3 Conditions For Feasible Solutions

As has been previously implied, even the generous hypotheses of

Appendix A are not sufficient to guarantee the existence of a matrix

-1
Bk which solves Eq. (l)'in 3.1.1. This is because, even though

Problem 2.1 is assumed to be well-posed, i.e., its solution exists

in principle, the system is in general only partically controllable
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in the sense of Section 8.1.1. In such a case we have no way of

knowing apriori. whether onemesh point lies in the controllable

subspace of the next,etc. Thus, the concept of and conditions for

feasibility are of central importance here.

A feasible trajectory is one satisfying all specifications of the

problem except that the criterion J is not necessarily minimized.

That is, using the attainable set notation defined in Section 8.1.1, a

trajectory x(t), joining the points x(tk) = xk and X(tk+l)

Xk+l, does not exist unless

xk+l e (Xktk;tk+l)

or equivalently,

k (tk; k+lXk+l
) (1)

An analogous statement with respect to sets of traversal holds be-

tween every pair of distinct points belonging to a feasible trajec-

tory, i.e., the relation

(t) E (Xktk;t) (t; tk+l, k+l (2)

holds, for any t e (tk,tk+l).

Local feasibility hypothesis. - The feasibility condition of

Eq. (2) is obviously satisfied by any pair of points belonging to an

optimal trajectory. The condition also applies, by continuity, in

some neighborhood of the optimal trajectory. The local feasibility

hypothesis consists in assuming that condition (2) applies along an

arbitrary trial trajectory. This implies that all of the necessary
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2 -point transfers exist. If the hypothesis is untrue for the orig-

inal problem (as evidenced by the appearance of singular B), it can

be relaxed into a controllable version of the problem by temporarily

introducing point-discontinuity penalty functions. That is, the

"hard" boundary conditions such as (tk+) = xk are removed, and

in their places a F.V.Co such as the quadratic form

T -t (3)
pj[x(t k+) k+ Q [(tk+l) - Xk+l]

(ghere Q is a positive definite N x N matrix and pj > 0 is a

scalar penalty factor) is added to the previous criterion value.

Then as shown in reference 45, the sequence po arbitrary > 0,

Pi > P- 1i with lim pj = I, will lead to a trajectory with vanish-

ingly small mesh point discontinuities, from which the solution to

the original problem may be recovered.

In many cases, however, it is possible to avoid the use of pen-

alty functions by approximately choosing the iteration parameters.

Also, the adjustable mesh-points should be specified in a manner

compatible with the initial boundary conditions. For example, for

time-open or time-optimal problems, the mesh points should not be

fixed in time. That is, one must formulate the TPBVP's in a fashion

that makes sense in terms of the given system and the capabilities

of the control system, by describing the mesh points in terms of

quantities that are attainable for this particular system. Unfor-

tunately, this process does require some judgement on the part of

the analyst and cannot be reduced to a routine prescription. The



- 26 -

following considerations, however, are helpful in identifying the

proper formulation.

Generalized iteration parameters. - As has been mentioned the

two point boundary value problems are solved numerically by itera-

tion. In general, the N terminal conditions are to be met by

proper choice of N initial conditions.

stractly symbolize the desired terminal c

itial condition to be determined.

Typically, the components of d(tk)

terminal equality constraints and N- nk

For example, if >Ak requires the first

to have fixed final values, the other N-

has the form

d(tk) = Il(tk),x2 (tk) xnk(tk);

Let the vector d
k

ab-

condition and Pk-l the in-

are determined by nk

transversality conditions.

nk components of x(tk)

nk being free, then 1(tk)

T

nk+ (tk) ' N (tk) (4)

and must satisfy the terminal condition

t(tk) ..[. k .'.I kI2 ; 0 ... (5)

Similarily, Pk-l represents the initial value of those components

of the state and adjoint vector which are not defined by boundary

values or transversality conditions at time tk_1l That is, Pk-l

represents N independent initial conditions which lead, via inte-

gration of the canonical equations, to N dependent final values

d(tk). Thus, the iteration problem is to find the N-vector Pk-1

which will transfer the canonical state-adjoint system to a terminal

state that satisfies Eqs. (4) and (5). For such a transfer to
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exist, it is necessary that the symbolic, N x N Jacobian matrix

a( k)
(6)

apk-1

be nonsingular. This requirement dictates the choice of the itera-

tion parameters Pkl'

It is desirable, whenever possible, to use the initial adjoint

variables as the Pkl s; however, other parameters can be used

when appropriate to avoid abnormal or unfeasible subarcs. For ex-

ample, the elapsed or final time may be included if the control ef-

fort available is bounded. This is because an arbitrary mesh point

Xk, even if it satisfies the local feasibility hypothesis of Eq. (2)

with respect to the preceding and subsequent mesh points, then may

not belong to ( Xkltkl;tk) for all values of tk.

For example, even the elementary problem

1 2
minimize J = lu(t) dt

with

x(t) = u x(O) = O x(l) = 1 + E

(where e > 0) exhibits this behavior if the control magnitude is

constrained, such that Iu(t) < 1. No solution then exists unless

the final time is relaxed at least to 1 + E.

In more general examples, it may be possible to use components

of the design parameter vector) B or of the state or control vec-

tors, in addition to the final time, to replace some components of
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~(t0). See reference 115 for a relatively thorough discussion of

this possibility.

Finally, note that it is possible to investigate the existence

of B , at least over a short interval, by examining the transition-

matrix differential Eq. (4) in 3.1.1. I.e., to the first order in

time,

B(t - t
0
) Z [a(tO)B(tO ) + B(t0)D(t0

)](t - t
O
) = 8(t0 )(t - t

0
)

(7)

Hence, if the Jacobian matrix B(tO ) itself is singular, one need

not solve Eqs. 3.1.1(1) through 3.1.1(10) in order to learn that B

is singular. Usually, an examination of the rank and structure of

B(t ) will suggest the choice of generalized parameters Pk

Mesh spacing. - The convergence properties of the TMA are de-

veloped in Section 8.3. Given the present hypothesis that the gen-

eralized Jacobian (6) is not singular, it is shown that quadratic

convergence is obtainable if either the initial guess ~o(tk) is

"close enough"* or the time interval is short enough. "Short enough"

means that the time interval does not greatly exceed the dominant

local "time constant" of the system. The latter can perhaps be

judged from the physics of the system, or may be derived from the

Jacobian matrices 3.1.1(7), evaluated at particular times of

interest.

More practically, aheuristic scheme could be employed to de-

crease mesh spacing whenever convergence difficulties are noted -

*C.f. Eqs. 8.3(7) and 8.3(8).
**C.f. Eqs. 8.3(10) through (12).
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as evidenced, for example, by an excessive number of trials to reach

convergence.

3.1.4 Example-Zermelo's Problem

The following example will illustrate the transition matrix al-

gorithm. It also demonstrates the importance of choosing proper it-

eration parameters as discussed in Section 8.1.1. As Figure 3-2 in-

dicates, a boat has a constant speed v relative to the water,

which in turn is moving with a fixed velocity u in the X-direction.

It is required to find the heading angle a to minimize the time of

transit between two fixed points. The system is

x = u + v cos a y = v sin a (1)

Upon applying the maximum principle and other steps prescribed above,

it is readily seen that the optimal control law is

tan a = ~2/1 (2)

and the canonical equations are

x u + v /p

y ~v*2 /p
= v/p(3)

0

where

p = + +2] (4)

Unfortunately, if *1 and *2 are taken as iteration parameters, it

can be shown that the B matrix has a determinant proportional to
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Jo.-~=k +

Xk

V = u / (t; tk, xk )

/ for V>u
-Envelope for

V < u, all t

REVERSED TRAVERSAL SETS FOR ZERMELO'S PROBLEM.

V (boat speed relative
to water)
a- a - heading angle

R ivert - u (water speed)

FIGURE 3-2. - ZERMELO'S PROBLEM.
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/P + 1 *112/P
- _ o (5)

- ,12/P 2/

to the first order in time, so that B is singular and hence the

pair (*1,~2) are not proper iteration parameters. On the other hand,

the pair (a,tf) results in a tractable result, i.e., to the first

order

=a~(x,¥) = /v sin a u + v cos
B = (X,) (6)

a(altf) v cos a v sin a

whose determinant

2
AB = - v uV Cos a (7)

does not vanish if v > u. But, if v s u, B is singular at head-

ings such that

a = cos (v/u) (8)

Figure 3-3 illustrates the geometry of the traversal sets f (tl;

tk,xk ) near the point (Xk, tk),corresponding to v > u (the oval),

v = u.(the circle) and v < u (the pointed figure).

In the latter case, singular B would be experienced if a trial

mesh point Xkl1 lying outside the envelope were chosen. In that

case a penalty function formulation as discussed above could be used

to recover a feasible mesh point.

3.2 Level II - Iteration in Mesh Point Space, I

At this point the selected mesh-points have been connected by

individually-optimal subarcs, and the machinery exists to re-connect

them after perturbations. It remains only to perturb the points in
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XIp so that the overall transfer is optimal also. Clearly, if we
pp

can show that: (a) the contribution to J arising from each subarc

is a function of its mesh coordinates only; and (b) define the grad-

ient of J in e , then all the existing theories of mathematical
PP

programming may be incorporated in Level II. We demonstrate these

two crucial points below, before proceeding with the development

search algorithms in X.
pp

3.2.1 Interpretation of the Adjoint Variables as Partial Derivatives

Theorem. - Consider Problem I, the optimal TPBVP defined on the

4- *
interval If= [t0,tl], with t = f(x,u) only and no P.V.C. terms.

Assume that:

(a) The state variable derivatives t(x,u) are continuous and

has continuous second derivatives in all arguments and the component

f0(x,u) is bounded below for all t c

(b) The admissible controls consist of all bounded, piecewise-

continuous functions, with finite number and magnitude of discontin-

uities, whose values u(t) belong to a convex set Q C RM for all

t CZ;

4-
(c) The two mesh points x 0 and xl and times t0 and tl

defining the terminals of the trajectory are chosen so that discon-

tinuities in u(t), if present, will coincide with to and/or tl.

Thus, it is sufficient here to consider only single, continuous

functions with values in n; and

This entails no loss of generality since the P.V.C. terms are
already of the desired form and the neglected parameters B and t
may be regarded as additional state variables - c.f., 8.1.3.
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(d) The control u(t) defined over ~ and its corresponding

trajectory xu(t) are unique, feasible, and optimal. That is,

x(t0 ) x0, x(tl) = x
1

and the Maximum Principle and the Convex-

ity, Normality and Jacobi conditions are satisfied for all t ~ 

Then. - (a) the resulting integral criterion value depends upon

xO and x
1

only, i.e., J = J(x,xl) in ( is the do-

main of feasible pairs of initial and final points in R2N, for

given I); and (b) the gradient of J(xO,xl) exists and is defined

in R2N by

VJ(x'xl
1
) = L (tfj (1)

within a scalar multiple.

Proof. - For condition (a), optimality implies that an admissi-

ble control exists in the form uopt(t) = v(x0 ,x ,t), for all t e,

which solves problem I. Thus, (a) follows immediately upon inserting

this function into the system equations and the defining integral

for J.

The existence of expression (1) is also implied by optimality.

That is, in the rigorous proof of the Maximum Principle (c.f.,

Chapters 1 and 2 of ref. 137) it is shown that for u(t) and xk(t)

to be optimal, it is necessary that there exist a non-zero, contin-

T
uous vector function +(t) = (0(t),1l(t),o -N(t)) and a Hamil-

tonan function (tx tut =(tu T-u t
tonian function :(e((t),x(t),u(t)) = 9(t) f(x,u) such that

-~~~~+ X-a~~~ ~(2)
ax

and the Hamiltonian is maximized with respect to u C Q for all t ez
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Thus, it remains to show that the adjoint variables may also be

interpreted as partial derivatives of the integral criterion value

J. This may be readily accomplished, under the present assumptions,

by simply constructing the first variation, 6J. Since x(t) =

('x(t),u(t)) in problem I, we may write

tl

J S= 0 o(xl(t),u(t)) + 4 (t){x(t) - (x(t),u(t)) 1dt

to

Recalling the definition of j and setting ~0 = -1, this may be

expressed as

t

J = [-ai+ (t)(t)]dt (3)

Integrating the last term by parts we obtain

1T +-+T + '
J = (t)(t ) --0)x(t0 ) - [id+ T (t)x(t)]dt (4)

to

The variation 6J due to perturbations in x(t) and u(t) may now

be calculated by differentiating under the integral sign in (4):

+T +T -+
UJ = ; (tl)6x(tl) - ~ (t0)6x(t0)

-4 1[e+ T6 6 dt (5)

(0t u

(This is justified since 7, and hence Y, have continuous second

derivatives. Note that if any discontinuities in u(t) are present,

they occur at mesh points only and do not affect the preceding

results.)
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The first term in the integral vanishes identically because of

Eq. (2). And the second term vanishes if the maximum principle is

satisfied. That is, a = 0 if no constraint is binding and
au

6u = 0 if a constraint is binding (otherwise, either the maximum

principle would be violated or u would be inadmissible). Thus,

-T t +T +
6J = T (tl)6x(tl) - T (t0)6 x(t0) (6)

Equation (1) follows immediately from this result. In a similar

fashion, it may be shown from Eq. (4) that

at1 | = _ -3(,(tl) ,X*,t1 )aJ t)X tat0
61 = 0

(7)

6x0 = 0

Comments. - (a) Having shown that J = J(x0,x1) and computed its

gradient as per Eq. (1), the variational transversality conditions

now follow immediately from the well known necessary conditions for

ordinary maxima and minima. At the terminal manifold '1 for in-

stance, feasible perturbations of xl must (to the first order) lie

in the tangent plane to at x. Clearly, for J(xa,xl) to be

stationary it is necessary that

~(tl) T1 = 0 (8a)

for all vectors T1 tangent to ~1 at xl, and similarly

p(t0 ) TO = 0 (8b)

at 70 to and x0 .
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(b) The adjoint vector A(t) also represents the outward normal

to.b'(x0,t0;t), the set of attainable states defined in the N + 1 -

dimensional space [J,xl"'xN] - c.f., reference 137.

This fact provides a geometrical interpretation of the preced-

ing results and a means of understanding the role of the second-

order hypotheses of the theorem. The notation and precise defini-

tion for the sets of attainability are given in Section 8.1.1.

These concepts are illustrated in Figure 3-3, where x
0

= J is

plotted against a typical state variable xi(t1). The set 4'(x0,to;t l)

and its boundary are shown in the upper part of the figure. It's

projection into state space, Af(xO0 ,t0 ;t1 ) is shown edge-on as the

heavy line along the xi-axis. The adjoint vector ~(t1) and tan-

gent plane f(t
1
) are shown at the terminal point xi(tl). By op-

timality, X(tl) C a3' and, to the first order, optimal perturba-

tion lie in r. Clearly, if aW' has the smooth, regular struc-

ture implied by the figure, the first order change 6J due to the

perturbation 6xi(t
1
) is given by

6J = - itl 6xi(tl) or 6J = + i (t0)
01 ' 

Choosing %0 = -1 as a scale factor and passing to the limit

6xi + 0, we recover Eq. (1).

Evidently this result depends only upon aO' having a well-

behaved structure. And, although a rigorous discussion is not in-

tended, the second-order hypotheses of the theorem actually imply

proper structure of 34'. Specifically, the continuity properties
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together with the convexity condition mean that ant ' does not have

"corners"- or other irregularities where +(t) would be undefined.

The-normality condition means that x(tl) 3 aw (c.f., points "a"

and "b", at-which = 0); and hence that the scale factor choice

'0 = -1 is legitimate. Finally, the Jacobi condition implies that

a4 is not "folded" or multi-sheeted in a neighborhood of Xl, thus

establishing uniqueness in a local sense.

3.2.2 Necessary Conditions in I
PP

For an individual arc the minimum criterion value Jkmin is

unique if it exists at all, and it depends only on the end-point co-

ordinates as shown above. Hence, the original integral criterion

may be expressed as
K-1

J= Jk,min(Xk;xk+l) (1)
k=O

Thus, the upper level problem reduces to a problem in ordinary cal-

culus or mathematical programming, namely:

minimize J(x0;x' );K) (2)

where

Xk pp

If pp is the whole space RNK the classical necessary conditions

A2J dpositive
=0; K [+2 definite

axk L

apply to the problem thus stated.
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More generally, the celebrated Kuhn-Tucker conditions, c.f.,

reference 45, would apply if 1 were a general convex subset of
PP

RNK. But for convenience, let us first consider the case where the

points in X are unconstrained.
PP

Unconstrained mesh points. - In view of theorem 3.2.1, the

above first partial derivatives are given by

aJ +(t+ + - (4)
axk larc k-

1
arck

In R K we may, therefore, write the gradient vector as

W(t0) 0
W(t,)- p(tl)

-VxJ = . (5)

'+ +
0 - ~.(tK)

At a given point in time, the components of the gradient of J are

defined in the space of mesh points; hence the name, "mesh gradient",

-l
for the present concept. Assuming that Bk exists, the Hessian or

second-partial matrix K may be determined by re-arranging Eq. 3.1

(3) in the form

(tkl) I F 6(tk)

L'JL ] [G 1(6)

where

E B-1A F = Bk 1

k = Ck - DkBkLAk Hk DkBk (7)
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Then by making the following substitutions: (a) 3.1 (6) into (7);

(b) (7) into (6); and (c) (6) into (5); collecting terms, and for-

mally differentiating the result, it can be shown that K has the

block-tridiagonal form

-E I-F I

I01 0- E E O
K - = __ 1 - 0- -(8

K= (8)

GK- 2 IHK-2 EKl -FK-1

I GK-1 I H-1

Equations (5) and (8) may be used to verify the necessary conditions,

such as (3), which apply to the upper level.

P,V,C Terms. - Since J is in general a sum of integral and

point-value contributions, the general gradient is obtained by add-
aPk(Xk)

ing a term such as to each element of the gradient shown

ak

in Eq. (5). That is, if Pk = pk(k) only, then

_V J T 4E R (9)

LKj
where
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o0= -~o + a(X
xo

aPk (k)

axk (10)

and

+ ++ dpxT.xJ

a2pk
Similarly, a term such as must be added to each diagonal block

axk

in the second derivative matrix of (8).

In the more general case where the kth PVC is influenced by

mesh points other than Xk, the additive terms indicated above are

replaced by summation over the appropriate indices. That is, if k

represents the range of indices for which Pk* is influenced by Xk,

the general gradient term is

(11)
=Ok -Oz~k ak X+

k* ak

The second-derivative matrix K is similarly modified, keeping in

mind that an off-diagonal block will be created each time k* # k.

Constrained mesh points. - A generalization of the transversal-

ity condition may be derived by noting that any feasible perturba-

tion 6xk must be in the hyperplane iks tangent to .k at the

point xk
.

I.e.

(12)o .

for all linearly independent vectors Ok in k.' That is, the
. .~~~~~~

(k =O~k
+

k 
+
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gradient components associated with x k must be collinear with the

gradient to 4*k at x
k
. More general conditions derived from

Kuhn-Tucker theory are presented in Appendix B. From henceforth, it

will be assumed that all these conditions have been enforced, so

that the gradient is understood to be taken with respect to feasible

directions only.

3.2.3 Direction-of-Descent Algorithms

Having now developed the structure of the criterion value func-

tion and the necessary conditions that apply to its minimization, it

is finally appropriate to consider numerical algorithms for implem-

enting Level II. There are many which could be considered, for in-

stance references 44, 45, 48, 49, 57-60, 67, 68, 83, 87, 122, 138,

176, and 185. Three algorithms of present interest are presented in

Appendix B and their characteristic features are developed. These

are:

(a) An apparently - novel, "maximally smooth" linear step

algorithm;

(b) A second-order step algorithm; and

(c) A modification of the Fletcher-Powell algorithm in which

the unidimensional-search step length is computed in closed

form from second-order data (as opposed to numerical linear

searching)

These algorithms differ significantly in their convergence rates

and other details, but all function by defining and searching along
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successive directions of descent in I . Hence, it is of interest
PP

to consider the convergence properties of direction-of-descent al-

gorithms as a class. In the present terms it is possible to define

candidate directions of descent as

s = {unit vectors in X s^ · Y < 0} (1)

That all such directions are directions of descent may be shown as

follows. Suppose that the NK x NK second partial matrix

ax= 2 <JZ
i .

(2)

is well defined and has a uniform bound in some neighborhood of the

vector

X .... i] = ,i

(By uniform bound, it is meant that there is a

that

for all z e Ri.)

Then, use Taylor's theorem with remainder

of J resulting from a step of length a > 0

from X*:

number m > 0, such

(3)

to express the value

in the s-direction,

J(X* + as) = J(X,) + as Tvj + 1 as2[V.x(I)]s
I 2 s

where

C.= oex + (1 - o)[cs]

and

(4)

I T [ V -IMy *) ] m I{ 2



- 44 -

Now, recalling that s is a unit vector, defining 8 to be the neg-

ative of the cosine of the angle from s to E and using the uni-

form bound relation we get

2
J(X* + as) < JX?*) + aIVxJI + m(5)

Since B < 0 by hypothesis, it is always possible to find a suffi-

ciently small a > 0 such that the right hand side of (5) is less

2
than J(X*)(e.g., any value of a in the range 0 < a < - !8VxJI).

Hence, the vectors s defined above are directions of descent.

A direction of finite descent is similarly defined as

s = {unit vector in I;s * = < -e < 01 (6)

At this point it is intuitively clear that descent algorithms

based on always searching along a direction of finite descent, will

eventually converge if J is bounded below. This is of fundamental

importance and is therefore stated-as a formal:

Theorem. - Given the hypotheses of section 8.1.1, a uniform

bound forEq. (2) above, and that J is bounded below. Assume that

an algorithm using only directions of finite descent is applied to

the function J(X).

Then. - The descent process will eventually converge, in the

sense that J will ultimately approach its "nearest" local minimum.

Proof. - From the triangle inequality and the above mentioned

bound, it is seen that
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J( + as) JX*) + a 2M (7)

where a, a, and m are as used above.

Arbitrarily set

a I= - ] vJ I (8)

then

LJ)J(,)IBVjI (9)JR*) - J* + as) > VJ(9)
2m

Recalling that

8 2 E (10)

which follows from the definition of a finite descent direction,

consider the sequence {X
i
} and assume it has a limit point X. Form

the sums

p-1 p-1

_ [ Ckk+l) - J MO) - Jt kVJkI (11)

k=O 2m

(Eq. (11) follows from the fact that Xk+l = Xk + ask). Thus,

p-1

J(x) J(x0 ) - l SkVJki (12)

k=O

Now, taking note of the fact that J is bounded below (because fo

is bounded below and J is finite) and passing to the limit

lim J(X ) . J(Xo) - 2m 1 IkVJ kL (13)
P 0 p 0 kk

0

then shows that the series 2DI SkVJk12 converges, which means that

0
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lim IskVJk 1 = o (14)
k-o

This implies that

lim IEVJ k2 0 (15)
k-en

because of (10), and hence

lim IVJk12 = O since E > 0 (16)
k-e

by definition. Thus, any algorithm which produces directions of de-

scent will eventually converge.

In passing, it should be noted that the finite descent condi-

tion (6) is viewed here as an empirical, verifiable restriction on

admissible search directions, not necessarily as an analytical prop-

erty of particular algorithms or objective functions. The class of

"gradient-restoration" techniques (c.f., ref. 122) functions by, in

effect, keeping track of 181 and restoring the gradient direction

(1B1 = 1) as the current search direction whenever a predetermined

critical value of E is reached.

To summarize, the essential Level II operations are to compute

the criterion value J(,xl- ' xK ) the gradient vector (3.2.2(5)),

the Hessian matrix K (3.2.2(8)) and then apply a direction-of-

descent algorithm to find the optimum mesh point locations in XE
pp

The overall MG method then entails the following major steps.

(a) An initial set of mesh points is selected by judgment, ob-

serving the criteria of 2.4(c) and 3.1.3.

(b) The resulting sequence of optimal TPBVP's is solved using

the TMA (summarized at the end of Section 3.1.2), or any other
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appropriate method. This comprises one cycle of Level I and pro-

duces the data needed> in Level II for step i.

(c) Level II then computes the quantities Ji' VJi and Ki,

and applies one of several appropriate search algorithms to define

a direction of descent si in E and a step length a. such
thappt

that

. =xi + as
Ji+l =i i+ isi

Ji+l is minimized with respect to ai, and

J < J. if a. > 0
i+l 1 1

(d) The necessary conditions applicable to Level II, c.f., Eq.

3.2.2(3) are checked at each step. Steps (b) through (d) are re-

peated until 3.2.2(3) is satisfied within acceptable tolerances.



4. SAMPLE APPLICATIONS

To illustrate the previous developments, the Mesh Gradient ap-

proach has been applied to four sampleproblems.

Example 1, a minimum effort control problem with field-free

dynamics, is intended merely to illustrate the Mesh Gradient method,

using several different descent techniques.

Example 2, involves a conjugate-point problem previously ana-

lyzed in reference 24, and illustrates the present method's strong

tendency to reject conjugate solutions.

Example 3, the optimal control of an unstable Van Der Pol os-

cillator, is pursued in considerable detail to demonstrate the effi-

ciency of the method for highly unstable problems with numerous in-

termediate constraints. Comparisons with alternative methods of

solution are included.

Example 4, illustrates the method's ability to efficiently

solve optimal, multi-impulse and low-thrust space trajectory problems

and develops the existence of a hitherto-unsuspected class of

solutions.

4.1 Example 1 - Minimum-Effort Control

As a simple illustrative example, consider the following problem:

10

Minimize J u (t)dt (1)

with

x = u; x(O) = x(10) = O

- 48 -
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Obviously, we have that U = i, and ~ = 0. Hence, optimal tra-
opt

jectories consist of straight lines, with slopes given by the local

value of i, between successive terminals. The components of the

vector A* referred to previously, are given in this problem sim-

ply by the change in slope at each interior mesh point.

For the sake of being definite, let there be llequally spaced

mesh points, initially located as follows:

o o
x0 = 10 = 

o
x. =1, 1 i 9 (2)

1

The corresponding values of A.i are all zero except for

A0=° = = 1.

4.1.1 Descent Via Programming

Proceeding by steepest descent we obtain the sequence illustrated

below. (Note that because of symmetry about t = 5, we have X4 =

-_o
x6, etc..) In Figure 4.1, the initial guess x and the corres-

ponding A are shown in heavy lines, the succeeding state-

iterates are indicated by light lines and identified by step number.

(A~1, but no further APk'S is shown.) It is apparent from the

figure that convergence is very slow. That is, the error measure

maxlX(t) - xop(t) l is not reduced appreciably until 9 steps have
t,k
been taken (or in general, K steps if K rather than 9 interior

mesh points had been used).

This slow convergence is a well-known characteristic of the grad-

ient method. However, if the conjugate-gradient algorithm is used
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.)

0 _

ax-

C - _

a,

2 _

>,

._

rio

O 1 2 3 4 5
Time

FIGURE 4-1. - INITIAL-GUESS DATA
FOR PROBLEM 4. 1.
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instead, exact convergence is attained after 5 steps (or about K/2

steps generally), as Table 4-1 shows.

Table 4-1

Gradient Step Data for Problem 4.1

Step 0 1 2 3 4 5

J 1 1/2 1/3 1/4 1/5 0

x1 1 1/2 1/3 1/4 1/5 0

X2 1 1 2/3 1/2 2/5 0

X3 1 1 1 3/4 3/5 0

X
4

1 1 1 1 4/5 0

x5 1 1 1 1 1 0

s
1

-1 -1/4 -1/9 -1/16 -2/25 0

s2 ° -2/4 -2/9 -2/16 -4/25 0

S3 0 0 -3/9 -3/16 -6/25 0

S4 0 0 0 -4/16 -8/25 0

S5 0 0 0 0 -10/25 0

Symmetrical about x5, S5 .
. . . . . x 5 , . s5

The preceding transparently simple example does more than merely

demonstrate one method of applying state-gradient theory to optimiza-

tion problems; it also illustrates the primary disadvantage of that

method. I.E. because of the fixed boundary points, the initial step-

lengths are relatively small and convergence is correspondingly de-

layed. It is clear from Figure-4-1 especially that there is no sig-

nificant reduction of maxlxj(t) - x (t)| until the boundary-point

~influences have t jopt tj
influences have propogated clear across the trajectory.

Conjugate
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4.1.2 Descent by First or Second Order Step

Anticipation of the above difficulties led, in Section 9.3.1 of

Appendix B, to an attempt at constructing a direction of descent s,

which vanishes in a smooth, continuous fashion at the fixed termi-

nals...

For the same problem and initial iterate considered above, the

g, h, s, and A* functions of Section 9.2.1 may be computed as

follows: =1

h = 1h=x

ah ah = 0

ax at

ah
=1

x (t): as above with

x = - 6(t - 1) - 6(t - 9)

g=0

.. A* = + 6(t - 1) + 6(t - 9)

Hence, search directions are defined by

= X(6(t - 1) + 6(t - 9))

s = + X(u(t - 1) + u(t - 9)) + a

s = + X(r(t - 1) + Q(t - 9)) + at + b

Here, 6( ), u( ) and r( ) denote the unit impulse, step and ramp

function of the indicated argument; a and b are constants of inte-

gration. Clearly b = 0, a = -X, hence

s = X(-r(t) + r(t - 1) + r(t - 9))
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With X = 1, s is precisely the negative of xO, and the optimum,

x(t) E 0, is attained in one step. It is apparent that one-step

convergence will always be attained by this method in the special

case where the state equations are field-free (the xi not appear-

ing at all) and linear in the control. The second-order step method

will obviously yield equivalent results for this particular example.

It will clearly provide one-step convergence for a general linear

state, quadratic criterion system, since the variational equations

of Section 9.2.1 are then collectively equivalent to the "exact"

transfer matrix of the linear system.

4.2 Example 2 - A Problem with Conjugate Points

As initially stated, the preceding example serves merely to il-

lustrate the application of the Mesh Gradient technique with several

descent techniques. Before proceeding to more complex examples it is

perhaps of interest to provide a simple demonstration of one of the

method's more important qualitative features - namely, its ability,

for some class of problems, to reject conjugate-point solutions.

A conjugate-point problem which may be solved analytically ap-

pears in Bryson & Ho (ref. 24); it is: Minimize the time required to

reach (xf,O) from the origin for the system

x = V cos 8

y = V sin 0

where the scalar velocity is

V = Vo y1 + y2/h

and 0 is the scalar control direction.
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Upon introducing the variational adjoint function and Hamilton-

ian, replacing t by x as the independent variable and using the

maximum principle, we obtain the canonical system

dy = , , sec (
dy = tan 8 J sec (1)dx V

= 2 -Y
(h2 + y 2)

with boundary conditions

y(O) = 0 y(xf) = O (2)

In deriving equations (1), use was made of the optimal control law

= - tan O[cos 0/v] (3)

where the bracketed term is constant by virtue of Snell's law. Bry-

son & Ho showed that this problem can be solved explicitly in terms

of standard elliptic integrals,.and their solution (which did not

include the heavy "envelope" curves) is presented as Figure 4-2(a).

This figure shows some of the minimum time trajectories and contours

of constant transfer time. Clearly there is a conjugate point

at h = 7, y = 0; the trajectory defined by e = 0, is optimum for

xf Xf0 < - < w but not for -- > i.

Vgt
Note, that the contours of constant h on the sketch develop

h 2
an infinite curvature at the conjugate point (i.e., 2 + )' Fur-

ay

thermore, on y = 0 beyond the conjugate point(h > T), the contours

Vgt
of constant h have a discontinuity in slope upon crossing the

X-axis.
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Although this complete solution is already available, it seems

that some further discussion might be instructive. Note, first,

that the conjugate point appearing at xf/h = a is actually the

"leading edge" of a cusp-shaped region fillIed with conjugate points.

The envelopes delimiting this region are shown by the heavy black

curves in the figure. Points within this region may be reached in

at least two ways. This may be understood when it is realized that

the solution curves for each value of 80 are periodic; so that, a

given point "P" may be reached either directly or by a trajectory

containing one or more intermediate zero-crossings. See Figure

4-2(b).

Of perhaps greater interest is the fact that the Mesh Gradient

approach appears to be unaffected by the presence of these conjugate

Ax
points if the mesh spacing is taken to be A- < f. This may be un-

derstood with the aid of Figure 4.3, when it is recalled from Eq. (3)

that

- tan 8 (4)

Let us assumed, for simplicity, that a single, symmetrically spaced

mesh point is imposed at xl = xf/2. The perturbed trajectory is

constructed by running arc 1l from 0,0) to (yl,X 1) and arc 2 from

(O,xl) back to (yl,Xl). The gradient of J at (yl,xl) is clearly

proportional to 2 tan 81. Thus, J will decrease when y moves into

the acute angle formed by the 2 arcs. If Xf < a, the acute angle

is always on the side nearer to the X-axis (Fig. 4-3(a)) so that

proper numerical searching will then select y E 0, 08 O0 as the

optimal trajectory.
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Xf
On the other hand, if -- > i, (Fig. 4-3(b)) the acute angle is

initially away from the X-axis, if Y
l
/h is small. Hence, searching

will proceed in the direction of increasing Yl/h until an optimum

height is found.

Although the MG technique's ability to reject conjugate solu-

tions for some problems is recognized as a valuable feature, it

clearly does not hold true for all problems and all perturbations, On

the surface of a cylinder, for instance, there are two geodesic

curves joining each distinct pair of points, and in contrast to the

example above, these cannot be embedded in a single, continuous fam-

ily of varied trajectories. On the other hand, the Jacobi condition

may be verified for individual arcs as shown in Section 8.2.3 and

8.2.4. Moreover, the condition can be verified for a total problem

if the overall transition matrix is known. (It may be found by

merely forming the product of subarc transition matrices.) The re-

sulting A,B, C, and D blocks may then be used to verify conditions

8.2(2) and 8.2(3).

4.3 Example 3 - Control of an Unstable Van Der Pol Oscillator

The basic computational steps of the Mesh-Gradient method, out-

lined in Chapter 3, were applied to the following sample problem.

, 10 2 2
Minimize J = t (xl + x2 +u)dt (1)

_0
where

x (1 - 2) - x2 + u; x2 = 

xl(0) = 0; xl(10) is open;

x2(0) = 3; x2(10) is open
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and u is the scalar, unconstrained control variableo These equa-

tions represent a nonlinear oscillator which displays limit cycle

behavior in the absence of control. The reasons for selecting this

example were that:

(a) Its low dimensionality facilitated checking, debugging

and modifications;

(b) By virtue of its nonlinearity and instability it provides

a realistic exercise for comparing optimization methods; and

(c) It allows direct comparison to be made with other techniques

because it was also considered by Lasdon et al (ref. 100)

and Mitter (refo 123) in their studies of control-iteration

methods.

4.3.1 Computing Codes

By introducing adjoint variables 1 and *2 and defining the

Hamiltonian function as

the steps called for ) - 2 + may + carried out straight for-

the steps called for in Chapter 3 may be carried out straight for-

wardly. That is, the adjoint equations are found by differentiating

Eq. (3), and the maximum condition yields

*1

opt 2 (4)

which is then used to eliminate the control from both the state and

adjoint equations. The resulting forms are finally differentiated

with respect to x, and 4i to obtain the differential equations

defining the transfer-matrix elements.
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4.3.1.1 Descent by Modified Fletcher-Powell Program

The first option involves using a modified Fletcher-Powell tech-

nique to guide the upper-level search and a linearized initial-value

method for the lower-level boundary problemso The organization of

the code is indicated by Figure 4-4(a) and outlined in Section 9.5°

A more-or-less self-explanatory program listing is available from the

author. The Fletcher-Powell routine, "FLPL", was adapted from one

furnished by Prof. J. D. Schoeffler (CWRU). The modification refer-

red to above consisted mainly of using Eq. (9.4(4)) to predict the

descent step length (by means of subroutine "STEPL"). (The undimen-

sional numerical search capability of the original routine was re-

tained as a backup feature, however.)

4o3o1l2 Descent by Second-Order Steps

Also studied, was a version of the MG method in which a second

order step was computed as per Section 9.3° The organization of the

code is illustrated in Figure 4-5, and the program listing is also

available from the author. Recall that the matrix inversions re-

quired for lower-level purposes serve double duty here; only one

more N x N matrix inversion is required to accomplish the recursive

upper-level solution.

4o3.1.3 Generating Initial Guesses for Lower-Level Iteration

Both codes contain a subroutine, "GUESS", whose purpose is to

predict the change in the initial p values associated with each

descent step. This keeps the lower level functioning very
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FIGURE 4-4. - PROGRAM ORGANIZATION, FLETCHER-POWELL METHOD.
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efficiently once an initial feasible case has been found. The fol-

lowing, is a systematic way of generating an initial feasible case:

Differentiate the state equations once with respect to time and

eliminate appearances of adjoint derivatives (such as ~1) by sub-

stituting the adjoint differential equations. Solve for the ~i

in terms of the xj, xj, and xj. These values (*i) are the re-

quired initial guesses on the adjoint variables. They are such that

the first-trial variational subarcs are tangent to the initial-

**
estimate state trajectory at the selected partition points. For

the present study, the initial feasible trajectory together with its

slopes and curvatures was determined from the equations

o (-t2)
X2 = 3 exp \/

4_t2
xl = 10 exp10

Essentially, this equation is arbitrary. It was chosen on the basis

that it satisfied the boundary condition of (2) and seemed to yield

a plausible type of asymptotic behavior.

4.3.2 Numerical Results

The problem discussed above was programmed for numerical solu-

tions as shown in Figures 4-4 and 4-5, and was then investigated with

the aid of a digital computer. A first and general observation result-

ing from these computations is that the canonical equations tend to be

In which the maximum condition has been used to eliminate u.

Here assumed to be represented by the first three terms of its Tay-
lor expansion near each mesh point, i.e., x?, ko and xO

J J . Ja
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very unstable (as previously anticipated). This was due in part to

the fact that the fundamental matrix, if evaluated along the entire

trajectory, contained some extremely large elements (in the "B"

block particularly). Additionally, nonlinear effects cause these

same elements to grow with extraordinary speed as the result of per-

turbations. The two effects combined to make this problem completely

intractable for initial-value iteration methods when it is treated as

a single arc. Even when initial values resulting from previous, con-

verged multiple arc solutions were used, the perturbations propaga-

ting from the mesh-points (due to numerical boundary-value tolerances

on the order of 10 
-
6 ) invariably cumulated in a machine "overflow"

and rendered further computation impossible. This general type of a

nonlinear instability, although perhaps somewhat exaggerated in the

present example, is often encountered in aerospace trajectory optim-

ization problems. Initial trials quickly established the fact that

either of the present Mesh Gradient algorithms will reduce the sta-

bility problem to insignificance if at least 10 subarcs are used.

Routine solutions, even from random initial-guess trajectories, can

then be made. Six subarcs are sufficient if even the slightest ef-

fort (see Eq. (6)) is made to obtain a plausible-looking initial tra-

jectory. Using 4 subarcs or less led to persistent difficulty even

when a very good initial guess was used. Five subarcs seem to repre-

sent a marginal case with results (i.e., convergence or overflow) de-

pending upon the fine structure of the initial-guess trajectory.

These considerations led to the selection of 10 subarcs as standard



- 66 -

for the numerical calculations reported below. It was also found

that at least 30 integration steps were necessary (eog., 3 per sub-

arc) to produce 4 digit accuracy in the results. Except where other-

wise noted, 5 steps per subarc were used herein.

4.3.2.1 Comparison With Previous Methods

The critical question is whether the present approach repre-

sents any improvement over the most appropriate existing method.

Since initial value methods proved quite impractical for the chosen

problem it appears that some type of control iteration method should

be the basis of comparison. These avoid the computational stability

problem by dividing the integration into forward and return passes.

The forward pass involves state variables only, using a predeter-

mined control function; this is a stable process. The return pass

consists of integrating the adjoint equation; this is stable also,

because the integration is backward in time. The most recent and

very probably the best methods in the control iteration category are

the conjugate gradient and second variational techniques discussed

in the paper by Lasdon et al (ref. 102). Some computational results

from that paper are duplicated in Figure 4-6 and compared with the

present Mesh Gradient results.

Rates of Convergence

In Figure 4-6(a), the value of J is plotted against iteration

number for both the state-gradient results and the previous control

iteration results. It is clear that both the Fletcher-Power and 2nd

order versions of the MG approach offer more rapid convergence than
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the control iteration methods, especially for the first step. The

difference is very pronounced in comparison with the gradient and

conjugate gradient methods; it is considerably smaller but probably

still significant in the case of the second variational control it-

eration method. That is, if a tolerance of 0.5% on the value of J

is accepted as defining "convergence" for practical engineering pur-

poses, the comparison displayed in the following table is obtained:

Table 4-2

Number of Steps Required for 0.5% Convergence

Method Number of Steps

MG (2nd order) 2

MG (Fletcher-Powell) 3

Second Variational (Mitter) 4

Conjugate-Gradient (Lasdon) >20 (say 30)

Steep Descent 20

The comparison is further elaborated in Figure 4-6(b), where the

gradient trajectories for the conjugate gradient and MG/Fletcher-

Powell methods are presented. Clearly the MG approach has produced

a better state of convergence after 3 iterations than the conjugate

gradient approach did after 20.

Computing Time

The comparison between methods is less clear-cut when performed

on the basis of computer time required to reach a given degree of
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convergence. Such comparisons tend to be very misleading unless

great care is used to insure that identical numerical-integration

methods, tolerances, and computing machines are involved in all

cases. This of course, could not be done for the Figure 4-6 re-

sults. Rough estimates, however, can be made on the basis that, for

a given computer, integration algorithm and number of integration

steps, the time should vary as

Neq x Nds x Nbv

where

N = no. eqs. to be integrated
eq

Nds = no. of descent steps

and

Nbv = no. of trials to satisfy boundary

values (the average value is used)

For the conjugate gradient method, N = 4 (2 state and 2 adjoint
eq

equations only). For the second variational and MG methods, there

are also 16 component equations of the fundamental matrix, so that

N = 20.
eq

The values of Nds were previously shown in Table 4-2. The

value of Nbv is unity for all the control iteration methods because

the terminal conditions are free for this problem. For the MG

methods, it was observed that Nbv averaged 2 to 3 trials during the

first descent step, but was limited to unity subsequently. (This

means the 2nd and later steps were computed on the basis of predicted

values of ,A*, etc.). Then the applicable value of Nbv decreases
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as Nds increases; a value of 1.75 (corresponding to Nds = 2) was

assumed here. The results of these estimates are presented in

Table 4-3 below:

Table 4-3

Estimated Run Times for Different Methods

Method Estimated Run Time

(arbritary units)

MG (2nd order)(20x2xl.75) 70

MG (Fletcher-Powell)(20x3xl.75) 105

Second Variational (Mitter)(20x4xl) 80

Conjugate Gradient (4x30xl) 120

Again the results tend to favor the MG methods, although in this

case the margin is perhaps not decisive.

To summarize this section, it should be pointed out that the

problem discussed above has free terminal conditions, and is there-

fore unfavorable to the MG method. It lends itself especially well

to solutions by control iteration methods, however, because the ap-

propriate final adjoint values (namely zero) are known in advance.

By contrast, the basic advantage of the MG methods does not apply

to the open-terminal case because there is no way to reduce the

dimension of the upper-level search.

From these results, it may be concluded that, even for an un-

favorable example, the MG methods (a) have definitely better overall

convergence rates than control iteration methods, and (b) range from

slightly better to competitive on the basis of run time.
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4.3,2.2 Constrained Problems

It was originally stated that the MG methods are primarily in-

tended for heavily constrained problems, so that even better perform-

ance should be expected in that case. The effect of various types

and numbers of constraints will be considered next.

Effect of terminal and intermediate boundary conditions. - When

imposed upon the preceding problem, these actually result in improved

MG performance by limiting the dimensions of the upper level search.

Point boundary values are incorporated especially readily in the

MG/Fletcher-Powell formulation. The constrained coordinates are sim-

ply excluded from the search vector and the remaining ones are re-

numbered. Typical results are shown in Figure 4-7, where run time

(measured in the same arbitrary but consistent units shown in

Table 4-3) is plotted against the number of point constraints. For

the MG method, the run time was 105 units (as in Table 4-3) for fixed

initial point only, and decreased gradually as more and more con-

straints were added. Control iteration methods on the other hand

show a rapid increase because the factor Nbv increases from 1 to at

least 2 (possibly much more) in going to a 2 point boundary value

problem. It is probable that even further increases would attend

intermediate boundary values (in general, an extra set of multipliers

is involved with each added point constraint) and there appears to be.

no likelihood of a compensatory decrease in Nds. These results lead

to the conclusion that even if the MG method is inferior for open
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terminal problems, it will surpass the control iteration method even-

tually, if enough terminal boundary values (not to mention intermedi-

ate boundary values) are imposed.

Effect of state-variable point inequality constraints. - Another

advantage of the programming formulation of the MG method is that

state-variable inequality constraints can be incorporated point wise

with no difficulty. A series of runs, similar to-that dis-

cussed above except with equality constraints replaced by consistent

inequalities, yielded the following result: In no case was the 105-

unit run time of the original unconstrained case exceeded.

Note, that the point-wise inequality constraint is sufficient

for many applications, either as an approximation or because it is

already an adequate description of what is required.

4.3.2.3 Effect of Poor Starting Iterates

The initial approximation used so far is quite simple, and is

evidently no better than that used for the control iteration methods.

Nevertheless, the possibility exists that both estimates may have

been fortuitously good. Therefore, the previous initial estimate for

the MG method was perturbed by adding to each partition point a ran-

dom point in the interval ± (10-t). Although results varied some-

what, as might be expected, no case of convergence failure was

For example, because of the hazard from solar flares, it may be re-
quired that the point of closest solar approach along an interplan-
etary trajectory shall not be less than (say) 0.4 Astronomical Units.
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encountered. Generally, no more than 2 or 3 iterations were required

to recover a case as good as the original exponential approximation

yielded. The remaining steps then approach the original pattern

(c.f., Fig. 4-6). A typical case is listed below.

Table 4-4

Iteration History From Poor Initial Trajectory

(Typical Example)

Iteration Number Value of J

0 108.9 (initial)

1 48.6

2 28.1

3 23.0

4 21.8

5 21.5 (0.5% conver-
gence)

4.3.2.4 Effect of Varying the Distribution of Computational Effort

It may be noted that the distribution of effort between the lev-

els is essentially arbitrary, provided the subarcs are short enough

to avoid instabilities. That is, it is possible to set up the prob-

lem on the basis of a few subarcs each containing many integration

steps, or vice-versa. Imagine that this distribution is parameter-

ized by 8 (where 0 < B < 1), so defined that $ = 0 means the en-

tire burden is carried by the upper level and B = 1 means that the

lower level carries the entire load. For the present discussion B

is arbitrarily defined by the relation
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No

B = 1 - NIs (6)
sa

where

N = integer number of subarcs
sa

and

N. = integer number of integration steps
is

When B = 0, a fairly conventional initial-value method is obtained

as a special case of the MG approach. The special case obtained at

the other extreme (8 = 1) is basically equivalent to the generalized

Newton-Raphson algorithm. The best computational results, however,

are obtained for intermediate values of B. This is illustrated in

Figure 4-8, where run time (normalized so that the minimum value is

unity) is plotted against B for the original example (free term-

inal problem). A value of N = 36 was used for all cases, theis

steps being distributed in an appropriate manner between the sub-

arcs. Clearly there is a very broad minimum of run time around

= 0'.14 to 0.20 for this problem (N = 6 to 8). For low values ofsa

B, the bottom level boundary value iterations are seriously hampered

by the previously described numerical instabilities. For increasing

8, these boundary value searches improve rapidly and soon reach a

point where, for all practical purposes, 1-step convergence is ob-

tained. Further increases of a cannot improve the lower-level op-

eration beyond this point, but does increase the dimension of the

upper level search. Thus, the run time gradually increases as -*+ 1
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There are two important points to be noted, from this example.

First, the best results are found for the general case, and not for

either of the special cases which existed previously. Secondly, the

importance of choosing the appropriate value of B has been demon-

strated. In fact, the example suggests the possibility of devising

an adaptive loop (in effect, a third "level" of the Mesh Gradient

method) which would vary B in an efficient if not strictly optimal

fashion, as the problem runs. This is considered to be a valuable

potential feature of the present approach and warrants further study

and experimentation.

4.4 Example 4 - Optimal Space Trajectories

As a final example, the Mesh Gradient technique is applied to

the following rendezvous problem in space trajectory mechanics (see

Fig. 4-9).

tK K
Minimize 'J = 2 2 (1)

25 2I(t)k I
to0~ ~k=O

with"

'.2
x(t) = v(t) and v(t) = - 2 (x)x(t) + a(t) (2)

where

2 2 2 2 3
2 = [x2 (t) + y (t) + 2(t)] (3)

x, y, and z are the three components of x in R3; t0 and tK

are fixed; the initial and final boundary conditions are

x(t ) x0 v(t0 ) v0

x(tK ) =x K v(t k) vk
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(Additional constraints may apply at the intermediate times tl ...

tKl1.) Physically, this system approximates a rocket having both

high and low-thrust propulsion devices. See Figure 4-10.

The high thrust propulsion phases are represented, as usual, by

impulsive velocity changes at K + 1 discrete points along the tra-

jectory. Each of these is considered to be accomplished in a single

step, such that the actual velocity resulting at the end of one arc,

v (t
k ) is instantaneously corrected to equal the nominal velocity

th
Vk defined for the k- mesh point. Thus,

Avk = V (tk) - Vk (5a)

(The initial velocity for the succeeding arc, v (tk), is set equal

to the nominal velocity vk, i.e., v (tk) = vk. The cost is computed

as Lvk = I (tk) - Vk (5b)

Note, that the total point-value contribution to J thus reflects a

sum of squares, as opposed to the summation of magnitudes usually

considered. This choice emphasizes the effect of large individual

Av's and is hence considered more appropriate for the case where an

individual rocket stage is to be used for each high-thrust maneuver.

The cost of the low thrust propulsion phase is represented by

the integral term in Eq. (1). The integral involves la!2 rather

than Ial; thus, we are considering a variable rather than constant

thrust device. This choice was dictated by convenience; however, it

is known that variable-thrust performance can be well approximated
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by as little as 2 or 3 optimal constant thrust levels (ref. 46). In

addition, methods exist for deriving constant-thrust performance from

variable-thrust results (ref. 77 and 186).

Finally, the parameter B indicates the relative efficiency of

the low-thrust and high-thrust systems. The trajectory solutions

will vary from all-impulsive at B = 0 to 100% low variable thrust

as 8 + a. For intermediate values of S, the solution is required

to indicate the optimum split between high- and low-thrust propul-

sion.

4.4.1 Subarc Solutions

A solution by Picard iteration may be obtained by assuming that

X2 in Eq. (2) is a known function of time (initially approximated

by the method of Appendix C), solving the resulting linear-quadratic

problems, computing the new X function by Eq. (3), and iterating

to convergence.

When the maximum principle is applied, we obtain (for each mem-

ber of the sequence) the following canonical system.

x= V

v = - (t)x + a"
-~~~~~ ~ 2 + (6)

X = X (t)

w1=- 

where A and p are the adjoint vectors corresponding to x and

v, respectively.
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4.4.1.1 Boundary Conditions

As indicated in Figure 4-10, the applicable boundary and trans-

versality conditions, for fixed end points xk and Xk+l, are

x(tk) - x = 0

V (t k)- Vk = O

(7a)

X(tk+l - Xk+ 

K

-t+tk+l 2 +-0 =
1 ~av (t k+l) k=O

Or, using (5),

x(tk) - x = 0

4_
v (t

k ) - v
k

= 0
k k

k+l (7b)
x(tk+l ) - Xk+l = 0

- (tk+l) + a(v (tk+l ) - Vk+l) = 0

If on the other hand the end point xk+l as well as the nominal ve-

locity vk+l is considered to be variable, the applicable boundary

and transversality conditions are

x(tk) - xk = 0

v (t ) - k = 0
K

X (tk+l) + a 2 2 IA =k 0

axk+l k=O

K

-a+ + I

av (tk+l) k=O
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Again using Eq. (5) and the chain rule for partials with restpect to

x, these may be written

(X tk) +B Avk + Ak+l 0

- (tk) + Av+k = O

-A (tk+l) + v Vk+1 L - E 

_~ ~ ~~--t -xk+

-~ (tk+l) + 8AVk+l = 0

In applying Eqs. (8b), it is important to note that a variation in

Xk may, in general, change the value of IAVl and IAvIl as
's kell as lavlklk

as well as IAVI2. (Recall Eq. 3.2.2(11).)

The solution of (6) to (8) may be simplified considerably by

noting that the three (x,y, and z) components of the solution are

independent and may be computed separately. That is, a 4x4 funda-

mental matrix is computed and then applied to each of the 3 compon-

ents,' as opposed to a single operation involving a 12x12 matrix.

4.4.1.2 General-Case and Low Thrust Solutions in Terms of the
Fundamental Matrix

Let us write the 4x4 fundamental matrix as

all a1 2 bll b12

a21 22 b21 a22

§(t;to ) = c c1 2-I- - (9)

cl1 c12 dll d12

21 c2 2 I d2 1 22
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where

0 1 1 0 0

w-2 0 O BK - - - ~(t;to)0 0 I 0 2 

O O I -1 O t

and

D(to;to) = I

so that

Combining (7), (9),

1

0

all

a21-C21

|]= : ~(tk+l;tk)

and (11) we see that

0

1

a
1 2

Ba22-c22

0

0

bll

Bb -d21-d 21

x
p t k

0

0

b12

Bb22-d22

Fxk
Vk 1

O=1 iftr slvig nalticl

I Svk+i

Or, after solving analytically for

x(tk) = xk

(10)

(11)

x

v

A

[P

(12)

tk

(13)

D(t;to ) =
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and

the unknown adjoint variable

by

xJ

Inverting (14) we have

22 22

= -L21i21A I-_b2 1 d 2 1

v (t k ) = Vk

as at the beginning of the arc are given

Xk+l - allk - a12vk

t Vk+l- (Ba21 +c2l)k -(Ba2 2 +c2 2 )vk
*k

(14)

12b iXk+l- allXk- al2 vk

bll J k+l -(Ba 21+c21)xk - (Ba2 2+c2 2 )vk
11

(15)

where the determinant is

A = bll(Bb22 - d22 - 1/B) + (b1 2 - 1/B)(-Bb21 + d21)

When B + -, it can be shown that

those values that result from the

dezvous problem, i.e.,

-b
11

p- (tk) =
11b22 - b12b21 (Vk+l -

b21
+ 2 21

bllb22 1'b12b21

X (tk) and P (tk) reduce to

standard, low-variable-thrust ren-

a21xk - a2 2 vk)

- a 
k

- a 2v
k

)

b22

b11b22 - bl
21 (k+l - allk - a12k)

b12

-llb 22 b12b2 (Vk+l- a
11 22' ~12b21 21Xk - a2 2 vk)

(16)

t k
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4.4.1.3 Solutions for the Case of Impulsive Thrust

When B + 0 in the impulsive-thrust limit, both A(t) and

P(t) vanish over the entire interval, and no low thrust propulsion

is used. In this case the initial and final velocities, v (tk ) and

v (tk+l) must be chosen so that the desired mesh coordinates

and Xk+l are achieved at the end points of the trajectory. That

is, when the applicable upper-left block of D in Eq. (9) is re-

labeled as [a , we have

=[v ;d~l~v t (17)

tk+l k

from which we find that the required initial velocity at tk is

v (tk) = b (xk+l - ak) (18)

and the corresponding (dependent) final velocity at tk+l is

v+t+ 
)

( -1l)+ -1 +
v (tkl)c= - db a)xk - b axk+l (19)

4.4.2 Mesh-Point Iteration

When the preceding results are substituted into the general equa-

tion for the gradient vector at a general (k t h ) mesh point, we obtain

(tk) X (tk ) + 8 AVj [

j=k-1 L-k

VkJ = k+l + (
k k l (20)

U(tk ) - U-(tk ) + = a kv
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for the general, high + low thrust case. Notice that a variation of

a mesh point coordinate xk will be general change the values of

Anv 1k-l and IA-vk+l as well as IAvIk. But since a velocity-

discontinuity is permitted, a change in the desired velocity vk at

a mesh point will affect the values of IAlIk and IAvlk+l, but not

k-l'

For the low thrust system, the above reduces to

=+( -) k A(tM (2A

V (tk a- (tk(2

L k - k

For the impulsive case, the mesh-point initial velocities are no

longer independent but must be chosen so that the prescribed coor-

dinates are attained at the end points of each subarc. Thus, the

gradient is with respect to coordinates only, i.e.,

1)

k'l

VkJ AV i (22)
j=k-l Lxk

As before, the gradient in pp may be constructed by simply ad-

joining the column vectors (20, (21), or (22), taking care that the

summation index j remains in the same range (0 j < K) as does

the mesh point index k.

The required partial derivatives may be readily computed from

Eq. (19) to be

aAv.
kJ 

ax k

k+l avi

j=k-l LXk akj
(23)
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where

DAVk-l

axk

aAvk+l

ax k

aAvk

axk

and

Thus, in X
PP

Vk-l

axk

v k+l

axk

a +
avk

axk

= - b k-1

k-1
(c - db a)k

avk

axk

db-k

k-l

+ b-la

k

we have

(B A)OAV
0
+ (C - DB A)OAV 1 + 0

B- V + LDB-1)0 + (BA)1] A 1 + (C - DB A) AV2

-1 - +
-BK-2 K-2V + (B A) VK_- AVK_1

-1 ()
+ (C - DB A)KiAv

R

-B1 + +
-BKi1AVK_1

(DB-1)K
K-1 + (Bl A)kVAK + 0

The partial derivatives for the general case, Eq. (20), may be com-

puted from the relations

VxJ =

(24)

[DB-1)
K-2



aAvk+l av k+l

+
avk - b
-v 21
aVk k-l

+

avk+l

= b

-+ 21

-k+l b
2
1

The eight partials of p and X in Eq. (26) are in turn computed

by differentiating Eq. (15) and re-labeling indices. For example,

- 89 -

_++
avk

avk

I
aAv

k

av
k

aAVk+

avk

AVk =_

axk 2

+
DVk+l

av k

-+

Dvk

VXk

(25)

where

axk axk

aXi k-l +

avk

Ik-l +
axk

avk

k-l

axk

b22
k-l

b22 
k-l

(26)

ax k

aXk

k+

av k

ap-

+ b22 

k al

ak

k avk



- 90 -

kax (Bb22 - d22 - 1/0)all

a Lr b l
l(Bb 22 - d22 - 1/B) + (b12 - 1/B)(-Bb 21 + d2 1)

(1/B - b12)(Ba21 + C21)
+ b (b d 12 21b 1/0 b + d(27)

11 22 d22 - 1/B) + (b1 2 - 1/B)(-Bb21 + d21

and the other seven are similarly defined.

The gradients computed as above are finally used to drive a

Fletcher-Powell minimization routine, c.f., Appendix B.

4.4.3 Numerical Results

4.4.3.1 Accuracy of the Approximate Solution

As point out in Section 4.4.1, solutions may be computed by the

method of Picard iteration. On the other hand, Appendix C shows an

approximate analytical form for the w function which is "exact" at

two points of the trajectory and permits a closed form solution for

the state and adjoint variables. By inspecting the defining Eqs.

10(4) and 10(5) for w, it may be seen that X never changes sign

and w itself is monotonic. By contrast, the "real" X function

(Eq. 4.4(3)) has X = 0 at every apse or turning-point of the tra-

jectory and cannot be well-approximated by a monotonic function. On

the other hand, the "real" function can evidently be approximated as

well as we please by adjoining a number of monotonic segments, each

having its own appropriately chosen value of K in Eq. 10(5). This

is illustrated in Figure 4-11 where w functions are plotted against

heliocentric travel angle for an Earth- to Mars-transfer trajec-

tory such as the one illustrated previously in Figure 4-9. The solid
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curve is the "real" function, the dashed curve shows the single seg-

ment approximation - which as expected is extremely poor - and the

dotted curve shows a five-segment approximation closely approaching

the "real" result.

Clearly, this approach is compatible with the Mesh Gradient

technique, with w being approximated by Eq. 10(5) on each of the

Level I subarcs. The descent process is illustrated in Figure 4-12,

for a low-variable-thrust vehicle flying the same Earth-to-Mars

orbit rendezvous mission considered above. The current criterion

value, J is plotted against the iteration number n, and compared
n

with the "exact", numerically integrated result obtained from refer-

ence 112. The case n = 0 represents a first or preliminary guess

using only one trajectory arc; as could be expected, it is a poor ap-

proximation. Nevertheless, when coordinates and velocities from the

single arc approximation were used to define mesh points for a 5-arc

approximation, the much-improved value shown at n = 1 resulted. A

Fletcher-Powell search (initialized by the n = 1 trajectory) then

resulted in the descent sequence denoted by n - 2, 3, 4, 5,...; with

convergence obtained, for all practical purposes, by the fifth step.

The effect of K, the number of mesh-points used, is illustrated

in Figure 4-13. Here the value of J obtained at the end of the de-

scent process is shown as a function of K (or the number of subarcs,

= K-1). Clearly, the original error is drastically reduced by using

even 2 subarcs, and 5 subarcs yield a rather accurate approximation.
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This illustrates the Mesh-Gradient method's ability to extend the

validity of a useful but limited-range approximate solution. In the

present example, this results in an estimated saving in computer

time on the order of 10/1 compared to "exact" numerical-integration

methods such as reference 112. (This is based upon a comparison of

the number of computational steps required for each method; the ref-

erence computer program is no longer available for direct compari-

sons.)

4.4.3.2 Low Variable Thrust Solutions

The above described procedure, using 5 subarcs, was applied to

a range of Earth-orbit to Mars-orbit rendezvous trajectories. Re-

sults are shown in Figure 4-14 with J plotted against heliocentric

travel angle 6 for a travel time of 250 days. The dotted portions

of the curves denote cases where the vehicle makes less than one

revolution about the sun; these are referred to as "direct" trajec-

tories and are of course repeated every 360 degrees. The solid

curve, however, represents "indirect" trajectories which wind fully

around the sun before proceeding to the designated rendezvous point;

these require more than one revolution.

Such "indirect", multi-revolution trajectories have proven

troublesome in the past (computationally) due to numerical instabil-

ities. This is because the multi-revolution trajectories generally

involve close perihelion passages, so that the true X function is

very large, for a time. This in turn causes the systems "effective"

time constant to be short enough compared to typical travel times,
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that the results are extremely sensitive to small errors in initial

estimates. For example, even the 3000 example trajectory discussed

above.(noted on Fig. 4-14 by an asterisk) has a minimum solar dis-

tance of about 0.1 AU Astronomical Unit), and stays below 0.25 AU

for about 25 days out of the 250 day trip. During that time, the

local "time constant" varies from 3 days to as little as 12 hours,

and small perturbations may become grossly magnified.

Therefore, many previous trajectory computation methods have

experienced significant difficulties in solving the multi-revolution

TPBVP. Reference 112, for example, did not attempt to compute

trajectory data beyond 3300 even though it was intended as a major

low-variable thrust trajectory data compilation.

4.4.3.3 Impulsive Thrust Solutions

At the opposite extreme, we may consider the case where only

the point-value contributions, C IAVk are significant. Then, as

0
pointed out in Section 4.4.1.1, the low-thrust system is not used at

all and Eqs. 4.4(6) may be written simply as

2+
X= -- x

(28)

The appropriate fundamental matrix for Eq. (28) is also given in

Appendix C, and the elements of the gradient vector were defined in

Section 4.4.2. The resulting algorithm was then applied, as in the

low variable thrust case, to a range of interplanetary transfers.

Five subarcs were used for the sake of accuracy. Thus, up to six
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impulses may be used. Descent and convergence properties were found

to be substantially similar to those illustrated above in Figures

4-12 and 4-13, and will not be further discussed.

Figure 4-15 shows results obtained for a family of 250 day Earth

orbit to Mars orbit rendezvous trajectories. The criterion is shown

as a function of travel angle as before; note, however, that

AVlk rather than I2 LAVlk is plotted. This is merely to

0 0

facilitate comparison with previous studies, such as reference 178;

up to e = 3600 (the largest value considered in ref. 178) the re-

sults are indistinguishable. Both reference 178 and other available

methods (e.g., Refs. 63-65, 73, and 74) could in principle be ex-

tended to operate beyond e = 360 0, but for practical reasons this

has not been done and results comparable to the present ones are not

available. It would appear, however, that the MG approach may have

some significant computing-time advantage over the previous methods

since (even for equal rates of convergence) the w-approximate sub-

arc solutions require a smaller amount of calculations. In any case

its time advantage over the reference 178 technique, the only one

for which direct comparison are available, varies from 5/1 to 25/1

for computing a single trajectory. These numbers, which basically

reflect the number of iterations required by the previous approaches

to solve the Kepler time equation, are probably representative of

newer methods (e.g., ref. 74) as well as ref. 178.
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The present approach has another, less obvious advantage com-

pared even to the most recent available method (ref. 74) in that it

appears to be more capable, if not infallible, in determining the

optimum number of impulses. This is due primarily to differences in

the way that "initial guess" trajectories are prepared. In the pres-

ent approach the analyst is required to sketch or visualize a

plausible-looking trajectory and select the location and timing of 6

(or more) impulses. The descent process then eventually rejects un-

needed impulses by driving them to zero magnitude. In the examples

shown on Figure 4-15, this led to 2 and 3 impulse trajectories, but

(for coplanar planet orbits) never 4, 5, or 6.

Other approaches, by contrast, typically derive an initial

guess from a non-optimum (but readily calculable) two-impulse solu-

tion. The "primer test" as developed in reference 65 from the basic

theory of Lawden (ref. 107) is then applied to determine whether the

*
final trajectory could be improved by adding an intermediate im-

pulse. If so, a third impulse is added and its location optimized

as in the present approach, e.g., by the Fletcher-Powell technique.

(The required fundamental matrices may be computed in closed form,

c.f., refs. 33 and 164.) Typically, this results in a locally

Briefly, Lawden-has shown in Chapter 5 of reference 107 that the
primer vector (p in the notation of this section) is aligned with
the velocity and has unit magnitude at the location of an optimal
impulse. If |P| > 1 at some point, this implies that the trajec-
tory could be improved by adding an impulse at some interior point,
e.g., the point where JIJ maximizes.
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optimal 3-impulse solution - i.e., whose two subarcs are each locally

optimal as judged by the primer test. There are cases, however, in

which 4 or more impulses are known to be optimal (c.f., ref. 39);

within the context of Earth to Mars orbit rendezvous trajectories

this may occur when there is a significant out-of-plane motion.

The cases shown in Figure 4-15 were re-computed for 2700 ' <

360 , under the assumption that Mars is located 0.5 AU above the

ecliptic plane. The results, not illustrated, show that: (a) there

are in general two distinct locally optimal 3-impulse trajectories,

only one of which would be obtained by reference 24 or any other ap-

proach relying exclusively as the primer test; and (b) in many cases

an (apparently unique) 4-impulse trajectory exists which is somewhat

better than either of the 3-impulse solutions. The physical logic

for the 4-impulse solution is that energy can be changed most effici-

ently in a region of high path velocity - i.e., near perihelion as

in reference 178 - whereas the plane-change maneuver is accomplished

more efficiently in a low velocity region - i.e., farther from the

sun as in reference 47. For this reason, earlier results involving

3-impulse, broken-plane transfers (c.f., ref. 35) may be regarded as

suspect.

Finally, the MG algorithm was applied to a survey of fast 3-

impulse Earth-Neptune trajectories. The results, shown in Figure

4-16, are presented in terms of l A\ lk versus travel time and

0
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angle as before and required under 2 minutes of IBM 7094 computer

time. One entirely unexpected result from this survey are the "sec-

ond minima" visible in the upper right (at long angles and short

times). These correspond to trajectories which nearly graze the sun

when the interior impulse is applied. Thus, the velocity is extrem-

ely high at the impulse point and a very large energy increment can

be gained from a moderate IAv12. The point of this example is that:

(a) the MG approach is efficient enough to allow the wholesale com-

putational study of optimal multi-impulse trajectories, on a scale

previously approached only for 2-impulse non-optimal trajectories;

and (b) unexpected, hitherto unsuspected results and conclusions

may sometimes emerge from such a study.



5. CONCLUDING REMARKS

Although the ab6ve-described analysis and examples are prelim-

inary in several respects, they support several basic observations.

(1) First, the MG approach is computationally feasible for its

intended class of problems. This further implies that the theoret-

ical structure, developed up to this point, is well founded.

(2) Secondly, the method has realized its basic objective of

handling, in a routine manner, problems which are very unstable,

and/or involve numerous intermediate boundary conditions. Note

that it is not necessary to guess initial values of the adjoint var-

iables.

(3) Also, pointwise state-variable inequality constraints can

be incorporated in a routine manner with no sacrifice in run time.

(4) The method has very strong convergence properties in gener-

al, and the initial rate of convergence is especially remarkable (re-

call Table 4-4). Ultimate convergence is quadratic, which is at

least as good as that provided by any competitive methods.

(5) As to computational efficiency, the MG method is at least

competitive with existing ones for open terminal problems and evi-

dently superior if there is an appreciable number of terminal or in-

termediate boundary conditions.

- 104 -
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(6) The method is characterized by a flexible level structure

which can be varied to suit the requirements of a given problem.

This has a significant bearing on computational efficiency and sug-

gests the desirability of adding a third, "problem-adaptive" level

to the MG method.

Considerable additional work is indicated to confirm and extend

these conclusions by applying the MG method to realistic examples

drawn from practice. It must also be recognized that the method is

presently in an early stage of development. Major generalizations

and refinements that could be considered include (but are not lim-

ited to) the following:

(1) It would be valuable to have a more general procedure for

generating an initial feasible trajectory when control-variable in-

equality constraints are present. That is, aside from resorting to

penalty functions, how do we correct an unfeasible initial trajec-

tory? The notion of generalized iteration parameters (c.f., Sec-

tion 3.1.3) could usefully be further developed - perhaps by extend-

ing the work of reference 115.

(2) Further work in the area of state-variable inequality con-

straints is required to either develop analytical criteria for sat-

isfactory pointwise approximation to a regional constraint, and/or to

incorporate the alternative necessary conditions into the existing

Level I and II structure. The technique of reference 158 for the

separate computation of arcs lying on a constraint boundary, in
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particular, appears to be compatible with the present methods. The

constrained arcs (or families thereof) could be treated as "active

manifolds" (see 4(a) below).

(3) Criteria and procedures for implementing the problem-

adaptive level III should be developed. For instance, a heuristic

method might be devised to sub-divide an arc that is "too difficult"

(as measured by the number of TPBVP iterations required) and also to

combine adjacent "easy" arcs.

(4) Extensions of the MG approach to more general problems than

those illustrated would be desirable. For example:

(a) Problems with active constraint manifolds (e.g., which can

produce a discontinuous change in some of the state

variables);

(b) Branched and/or segmented trajectories;

(c) Problems involving extremely large dimension, e.g., N = 50.

(5) There are also numerous detail refinements which can signi-

ficantly streamline the computations. For one example, it appears

to be unnecessary to recompute the transfer matrix at every step.

For another the, K-matrix data could be used, after the first feas-

ible Level I trajectory has been constructed, to predict initial xk

values corresponding to a chosen state perturbation 6x
k
. Based on

limited experience with the system of Example 4.3, this appears to

yield a 2 or 3/1 time savings for all Level I steps after the first.

(6) Based on the encouraging results of Example 4-4, it would

be worthwhile to further develop the capabilities of the MG method
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for approximation purposes. For example, it often happens that

simple feedback algorithms or other approximations can be derived

which, though perhaps suboptimal, are quite efficient if applied to

a short enough problem (the "velocity to gain" rocket steering al-

gorithm is a case in point, the approach of Example 4-4 is another).

One of these, used in place of the present lower level iteration

procedures, would greatly simplify the calculations by eliminating

the need to integrate and store matrix elements. This may be ex-

tremely significant for high dimensional problems because the number

of equations to be integrated would then vary as 2N rather than

4N2 . It is tempting to speculate that suitable "steering laws" for

interesting problems could be derived under the conditions used here-

in. These, combined with the present results could open a completely

new line of approach to high-dimensional problems.

(7) While the MG approach was designed primarily with computa-

tional applications in view, it appears to have at least some theo-

retical utility which could be exploited. For example, necessary

conditions for branched or segmented trajectories appear as nearly-

obvious corollaries of the basic MG results, but would require lab-

orious derivations if approached from the usual calculus-of-

variations viewpoint.
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7. MAIN SYMBOLS

Matrices

A, B, C, D

E, F, G, H

K

Hk' Mk ', Nk

Ki, Wi

Vectors

g

k

s

x

y

u

v

V

4:

V

PP

N x N blocks of the canonical (state plus adjoint)
equations' fundamental matrix

derived N x N matrices

KN x KN - dimensional Hessian matrix

auxiliary matrices used in the "H-Process" for
matrix inversion

auxiliary matrices used in Varga's recursion
formula

2N x 2N - dimensional fundamental matrix of the
canonical (state plus adjoint) equations

time derivative of N-dimensional state vector,
c.f., Section 2.1

ditto adjoint vector, c.f., Section 3.1.1

auxiliary vector used in recursion formula

search direction in RN or RiN

N-dimensional state vector, c.f., Section 2.1

N-dimensional state perturbation

M-dimensional control vector

velocity vector, c.f., Section 4.4

control synthesis

NK-dimensional state vector in the space of mesh
points
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Y

'Y

~kak' Yk' Uk

E

q

Vk

Scalars

a

X, Xi', ij

L

P

m

t

hjk

J

NK-dimensional state perturbation vector in the
space of mesh points

tangent vector to a surface in RN

N-dimensional adjoint vector

adjoint discontinuity at a mesh point

NK-dimensional adjoint discontinuity vector in mesh
point space

adjoint perturbation vector

auxiliary vectors

terminal error vector

L-dimensional vector of design parameters

auxiliary vector

auxiliary vector

(dimensionless) step length in unidimensional search

auxiliary function or bound

Lagrangian multipliers

auxiliary variable

number of function evaluations per step

A bound

A bound

independent variable (time)

Hamiltonian function

functions describing equality constraints.

criterion value to be minimized
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Subscripts

i, j, k, 1, min, n

0

opt

f

U

des

act

ext

max

min

L, M, N

Point Sets

X(xo to; t)

2(t;tfxf)

Vk

F
sa

X
PP

RN

Tr

general indices

original or initial

optimal

final

due to the control u(t) with t C Y
-
-

desired

actual

extremal

maximum

minimum

dimension of parameter, control, or state vectors,
respectively

N + 1 dimensional set of attainable states
c.f., Section 8.1.1

reversed set of attainable states, c,f., Section
8.1.1

kth constraint manifold

the set of feasible subarc solutions

basic time interval upon which the problem is de-
fined, i.e., (toltf)

set of admissible controls

set of forbidden states

set of permissible mesh points

the real N-tuples

tangent plane to ' in R.+1
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Other Notations

(+)

( )

()

()(J)

( )A

VZ, V+
z

vector

unit vector

d( )/dt

d ( )/dtj

transpose of a vector or matrix

boundary of a point set

perturbation symbols

indicates gradient operation with respect to the
variable z or the components of the vector z



8. APPENDIX A

DISCUSSION OF LEVEL I - THE TWO POINT BOUNDARY VALUE PROBLEM

The general problem described in Eqs. 2.1(1) - 2.1(4) may be

reduced to a form suitable for numerical solution by defining the

adjoint or costate variables, the Hamiltonian function and then us-

ing the Maximum Principle to determine the optimal control law in

terms of state and costate variables. The resulting, 2N-dimensional

state-adjoint system has mixed or "two-point" boundary conditions -

half of which apply at the initial time and half at the final. Such

systems cannot, in general, be numerically integrated in one pass -

and as pointed out above the required iteration processes are often

beset by major difficulties. Thus, to support the development of

the "Mesh Gradient" approach in its entirety, it is appropriate to

review the theoretical and computational basis of the optimal con-

trol TPBVP.

8.1 First-Order Necessary Conditions

In this section, several standard definitions and theorems are

presented, without proof., in a form appropriate to the present work

and in the interest of completeness and uniformity.
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8.1.1 Basic Definitions and Hypotheses

Continuity and differentiability. - The state-variable deriva-

tive function f(x,u,i,t) are assumed to be continuous, at least

twice-differentiable in the components of x and u and at least

once differentiable in t and the components of B. This implies

that the Hamiltonian function, c.f., Section 8.1.2, has the same

properties. Also, the component f0 (x,uB,t) which defines the

integral contribution to the criterion value is regarded as being

finite and bounded below.

Admissibility and convexity. - The class of admissible con-

trols, denoted by Q, is the collection of all bounded piecewise

continuous controls u(t), with- t C Or, whose values lie in the

convex set Q E R
M

.

Attainable states. - The set of attainable states in RN is

defined to be the collection of end points of trajectories x

emanating from the initial point x0(t0), corresponding to all pos-

sible admissible controls u(t) E 2 . I.e.,

6(Xot0;t) = u(t) u(s) s (1)

The corresponding entity in RN+1 is formed by treating the integral

criterion value as an additional state coordinate, say x0 = J. It

is denoted by the prime notation, i.e., J,(.

In a similar fashion the reversed attainability set,

&(t;tkxk) xu= (t)lxk e '(X(t),t;tk)} (2)
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is defined as the set of all points x(t) from which the point xk =

x(tk) can be reached.

The notation _opt( ) and Ropt( ) will denote the attain-

ability sets corresponding to optimal controls.

It should be noted that the sets V(x0,t0 ;t) and Q(t;tkxk)

are defined at one instant only (namely, t). It will also be con-

venient to define "sets of traversal" as the union, over some sub-

set of ¶1, of the sets of attainability. I.e., let

(xo,t0 ;t) = [ U (x0 ,t0;s)

and (3)

*(t;tkxk) = U %(s;tk,xk)
sc[ t, tk ]

In passing, it may be observed that although Qe and are not

necessarily convex, they have a nesting property, i.e.,

v (, t o;t l) ( 
0

, (Xt O ;t 2 )

if (4)

t 1e[t0 ,t2] C X

with a similar relation holding for the reversed sets.

Controllability. - The system x - f(x,u,8,t) is said to be com-

pletely controllable in the neighborhood of a point xk e RN if the

traversal set t*(t;tk,xk) of all points steerable to xk(tk) in

a finite time interval (tk - t) contains an open, N-dimensional neigh-

borhood of Xko It will be termed partially controllable if *
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includes at least one M-dimensional subset 6** which, in turn,

contains an open neighborhood of xk. These concepts are illustra-

ted by the following sketches.

Completely Partially controllable
controllable

R*

sional nbhd. of

Open, 2-dimensional xk defined on
nbhd. of xk Unfeasible *

It is assumed that all systems considered here will be at least par-

tially controllable.

Optimality. - An admissible control u(t) is called optimal if

the statement v(t) # u(t) for some finite subset of T implies

that J(v) < J(u). For practical purposes, optimality is considered

to exist when

(a) The maximum principle and transversality conditions (c.f.,

Sections 8.1.2 and 8.1.3),

(b) The convexity or strengthened Legendre-Clebsch condition

(c.f., Section 8.2.1),

(c) The normality condition (Section 8.2.2), and

(d) The Jacobi or no-conjugate point condition (Section 8.2.3)

are satisfied.

The "sufficiency"of these conditions is treated in references 4, 24,

and 108, for instance.

f
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8.1.2 The Maximum Principle for the Basic Optimal Control Problem

Consider first a simplified version of the problem defined by

Eqs. 2.1(1) through 2.1(4), with autonomous dynamics, boundary con-

ditions consisting of two fixed end points and integral criterion

only (no PVC). I.e., Problem I:

ptf

minimize J = f0 (x(t),u(t))dt (1)

0

with

x(t) = ,(x(t),u(t)) (2)

subject to

u(t) c Q C RM (3)

with

x(t 0) = x e RN

and (4)

x(tf) = f RN

Let fogfl *-.. fN be continuous functions on the interval (to0tf),

also possessing continuous first partial derivatives with respect to

x. Define the Hamiltonian function by the equation

(x,Iu) = 0fO(xu) + ~'f(xu) (5)

where x and the adjoint variables i are related by the canonical

equations

as 3(
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af0(x u)

ax ax ax

Let u (t) be a candidate control which is admissible and feasible,

i.e., which satisfies Eqs. (3) and (4). Then for u (t) to also

be optimal, the following conditions must necessarily be satisfied:

(a) There exists a number 0 < 0 and an adjoint vector ~ (t),

such that W (t) and x (t) are solutions of the canonical equa-

tions corresponding to u (t), i.e.,

·a * * ,+*

x (t)= -t d(x*(t), *(t),u +*(t);O) (8)
adp

W*(t) = _ t(x* ,(t) ,u (t) ; 0 ) (9)
ax

satisfying boundary conditions (4) and with a Hamiltonian defined by

(5).

(b) The function (~*x (t),i (t),u (t);O0) is maximized with

respect to u(t) E Q for u(t) = u (t), for all t e O.

That is, given two admissible controls u (t) and u(t), the

statements that u (t) is optimal while u(t) # u (t) on a finite

interval of (tl,t2) imply that

(x (t),, (t),u(t);iO) < %(x (t)*(t),u (t),*0 ) (10)

moreover, I = constant X 0 and the maximum value, 0, occurs when

the final time tf is free.
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8.1.3 Extensions to More General Optimal Control Problems

More general cases Can easily be imagined, even within the

class of two-terminal problems. It will be convenient to classify

them as follows:

(a) System: (1) autonomous; or (2) non-autonomous;

(b) Criterion: (1) integral; or (2) integral plus PVC;

(c) Terminal Time: (1) fixed; or (2) free;

(d) Control: (1) variable, u(t); or (2) variable plus fixed

parameters, u(t) plus 8; and

(e) Boundary Conditions: (1) fixed or moving target point

(N-tuple) in RN, Xf or p(tf); or (2) fixed or moving

manifold (k-fold) in RN, i.e., gi(x,t) = 0, i = 1,

2 ... N-k; or (3) free end conditions.

Necessary conditions, analogous to and derivable from the results

given above for the basic problems, are summarized here for cases of

significant interest. For all cases:

(a) The Hamiltonian is defined as by Eq. (5);

(b) The state and adjoint variables obey the canonical equa-

tions (6) and (7);

(c) The control satisfies the Maximum principle, Eqs. (9) or

(10). It is assumed here that Eqs. (9) or (10) can be used

to eliminate explicit appearances of u(t), so that the

canonical equations depend upon x, i and t only. This

may involve, for example, solving the equation

a+ =0 with 0 (11)
Du Du*
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constructing "switching boundaries", etc.; and

(d) The terminal necessary conditions, applicable to the Hamil-

tonian and the adjoint variables, are summarized in Table

5-1 (pp. 306-307) of reference 24.

It may be observed that the preceding results follow directly from

the basic theorem. For example, the non-autonomous case is treated

by simply treating time as an additional state varible, i.e.,

t = XN+l with XN+l = 1 (12)

and then applying the autonomous maximum principle and transversal-

ity conditions to the resulting N + 1 dimensional system. Also,

note that the terminal conditions shown in Table 5-1 of reference 24

follow directly from the partial-derivative interpretation of the

adjoint variables and Hamiltonian; furthermore, these apply (with

appropriate changes of sign) to the initial as well as the terminal

boundary value.

Necessary conditions for constant design parameters 1 '°' L

may also be derived, by defining L additional state variables

XN+l ... XN+L with XN+1 = XN+2 .. : XN+L = 0 (13)

and again applying the basic theorem. Note that the Hamiltonian,

and hence also the optimal control law, are unaffected by this step.

The transversality condition applies to the associated, time-varying

adjoint variables N+l(t) *.- N+L(t) at both the initial and

final times. If B is unrestricted for example, we have
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TN+l(to) 0= TN+L (t) = 

and (14)

N+l(tf) N+L(tf) = O

in addition to all of the previously defined conditions.

8°2 Second-Order Necessary Conditions and Sufficient Conditions for
a Local Minimum

Under the present assumptions regarding continuity and convex-

ity, it can be shown (c.f., refs. 24 and 108) that local sufficiency

can be established by adding the strengthened Legendre-Clebsch,

Normality, and Jacobi conditions to the Maximum principle and trans-

versality conditions.

8.2.1 Convexity or Legendre-Clebsch Condition

This states that the second-partial matrix

o-+ < 0 (1)
au

(i.e., is negative-definite) for all t in (t0,tf). It simply in-

sures that W- is actually maximized, as in ordinary calculus.

8.2°2 Normality Condition

A trajectory leading to the point x
k

and lying in the inter-

ior of Rt;tk,xk) - c.f., Eq. 8.1.1(3) - is called normal. In the

Zermelo problem for instance the two envelope lines for v < u

(Fig. 3-3) are in fact the boundary of (t;tk,xk). A trajectory

lying on this boundary clearly does not possess a 2-sided family of

neighboring extremals; it is impossible to reach xk from any
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point outside of Ij(t;tkk xk) in any length of time. Mathematically,

this is manifested by the singularity of the matrix B (c.f., Eqs.

-3.2.2(7)). Alternatively, normality is verified if B is non-

singular.

8.2°3 The Jacobi or No-Conjugate-Point Condition

The Jacobi condition states that an optimal trajectory may not

have a conjugate point at which the constant - J contours have dis-

continuous slope, i.e., at which a J/ax is unbounded. Regarding

the initial point as fixed it may be seen that the second partial

of J, with respect to variations in the terminal point, is given by

Eqs. 3.2.2(8)-(9); i.e.,

2
a 2J -1

= H = DB
2tf

ff

(2)

which must be finite. Or with the terminal point fixed, the matrix

2
a J = E = -B A
ax to

(3)

must be finite.

8.2.4 Equivalence of Second-Order Conditions

The above mentioned normality and Jacobi conditions are often

seen developed in terms of the backward-sweep approach, c.f., refer-

ence 24, rather than in terms of the present forward-sweep or

transition-matrix approach. Therefore, it is of some interest to

see that the derived matrices E, F, G, and H of Eqs. 4.2.2(9) obey

exactly the same Riccatti matrix differential equation as do the
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"Gain Matrices" Q, R, U, and S of the backward-sweep approach of

reference 24.

The transition-matrix differential Eq. 4.2.2(3) may be written

compactly as

d A DI I1 [A B1
dt C DJLY. C (4)

where

af a, = g and 6 = g (5)

ax 3a ax

By formally differentiating the defining Eq. 4.2.2(9) for the de-

rived matrices and using the convenient identity that

d (B-1 ) B-1BB-l (6)
dt

it is readily computed that

E = FBG

F = FBH - Fa

(7)
G = HBG - 6G

H = HaH - 6H - Ha - y

These are Riccatti differential equations, identical in form to Eqs.

5.3.3.4, 5.3.3.5, 5.3.3.8 and 5.3.3.9 of reference 24.

The latter, in the present a, a, y, and 6 notation, may be

written:

Q = uSR

u = uSS - ua

(8)
R = SBR - 6R

S = SaS - 6S - Sa - y
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Equations (7) and (8) do not possess finite initial conditions and

hence, cannot be integrated forward along with the canonical equa-

tions. Applicable terminal conditions, however, are given in Chap-

ters 5 and 6 of reference 24. For example, if the terminal bound-

ary condition required is to attain a single fixed point

x(tf) = xf

then

Q(tf) = 0

(t f) = I
'(9)

R(tf) = I

S(tf) = O

Because of the symmetry of Eqs. (8) and 4.2.2(4) and the form of

Eq. (7) it is clear that

U = RT and G= FT (10)

Thus, the present derived matrices would obey the same Ricatti dif-

ferential equations as those arising in Hamilton-Jacobi theory, but

the boundary conditions are different.

The precise relation between the present E, F, G, and H

matrices, and Q, u, R, and S of reference 24, may however be dis-

played by considering the second variation 6 J. In terms of the

present analysis we have that

2 = [6XO,xf] Lo I| x- (11)
while according to page 183 of reference 24 it is

while according to page 183 of reference 24 it is
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=2 - + S- RQ RTI RTQ- -
6 J=[i6xf _ _ _!_ (12)

By comparing (11) and (12) the following relationships evidently

hold:

E = -B-
1
Att - (S - RQ- RT)t,t

F = B It = RTQ-lI tt0 t,t t 0

G =(C - DB A)to9t = Q-1RIt~t
c o )to,t t,to

0

H = DB It Q 1Itt0

From this, it is clear that the "normality" and Jacobi conditions as

developed in reference 24 using the "backward-sweep" approach, are

exactly equivalent to those given here.

8.3 Convergence of the Transition Matrix Algorithm

A schematic of the algorithm is shown in Figure 8-1 below.

Its convergence is demonstrated as followso Let x = x(tf) - Xf;

this depends on $(t0) only. That is, C = C(~0). To find the

roots of 0(60) = 0, just expand C:

Z('0) il = Z(0) + 6Y 0 'i (i)

or, dropping+l i we have

or, dropping subscript 0 we have
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o'0(to) guessed initial adjoint

Given initial state System

Adjoint
correction
signal

Final value Xdes

Trajectories

Perturbation
matrices

FIGURE 8-1. - SCHEMATIC OF TRANSFER MATRIX ALGORITHM.

State
error
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~i+l -/ i
+] -l

L1 Ei14 i~J
(2)

Thus

l -W 1i -+ *ji)
i+l i 

-J~~~i-1i 

(3)K = (*i) - 4(* )

Next, expand 4 in Taylor's formula around For the j th com-

ponent we have

-* ->- -+* T j (> )4*44* 4-~

'J( 1+Jl B ] 21 + *T ) +2 (2i *)
4. 

(4)

thus

af .
a 

4*

+ =( + -

1i+1 - )j ) (i *)j
i i~~~~

12 (-+ _ --*)T+2 (~i

where 'e= ei + (1 - 8)i and 0 < e < 1.

*

4) =
a4

L - 1 r --- 2

a a 4 4*

L (bi-*)

But, from (3),

a (4*) =O

Thus, Eq. (5) leads to the result that for i > some critical value

we have quadratic convergence, i.e.,

(7)

where

j (Yi )

(5)

(6)

* T
(Ji - )

I%+1 - m*, -< Pl i I- i 2
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max max max T Fa T ]
~~P -Tj~~i ' (8)

j eqol] I a L +2 i

Directions of descent. - It should be understood that the quad-

ratic convergence displayed above is an ultimate rate, attainable

only in some "sufficiently close" neighborhood of the actual root,

Thus, initial rates of convergence are of equal concern, be-

cause it is evidently possible for a poor choice of 0 to cause

the Newton algorithm to diverge. Fortunately, the step direction s

defined by Eq. (2) is also a direction of descent for the quadratic

scalar terminal error function,

2 i~(6) 12

That is, since

i I ()12 T a
= 2- (9)

we have that

-2 rT a =1 2<0

Therefore, by the theorem in Section 3.2 , convergence, and hence

by implication the quadratic convergence domain can eventually be at-

tained as long as successive directions of descent are well defined.

These directions are well defined if the matrices aD(*n)/a7 are

non-singular. The singular case need not stop the descent if the

gradient vector shown in Eq. (9) is non-zero since then an alterna-

tive direction of descent is defined. Even at a spurious (non-zero)
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local minimum, it may be possible to replace the error function |I|2

by a more general form, such as E Qt, where Q is some non-negative

matrix, and thereby recover a legitimate direction of descent.

Thus, it may be seem that under fairly general circumstances,

the convergence rate of the present algorithm need be no worse than

linear, initially, and will ultimately improve to quadratic. More-

over, it is generally possible to have quadratic convergence from the

very beginning if the interval of integration At = tk+1 - tk is

small enough. This may be seen as follows. For the first step,

Eq. (7) may be written as

<I P Pl o I

where the spectral norm,

max T a2 i(9(0))

maP 1=oI lo -+L2 JJ (8a)

2

is the same as the spectral radius of since this matrix is
Exam

symmetric. It is well known in algebra that the spectral radius of

a matrix is bounded by row and column sums, viz

n n

m max ax (

p < min. I ) m, ,. ; IC ,, (10)

the definition of % it may be seen thatReferring to
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32 Ah it If2 (a fi +42 2 \3,/~~~~~~~' 23 \42 4

-j lb ag ax
Because of the definition of i, it follows that - ax and simi-

larly for the higher derivatives. Equations (3a) and (4a) then show

that, for short times,

ax(t) A-- at I · At = (At) (12)

a(to ) 4
Also,

a2x a2 a 2-2 Z2- ~ A
2

: 0,(t 2 )-÷2 -> - A

and in a similar fashion

ax at3)
-*3as

Thus, each term in Eq. (11) is of order Y(At) and, hence vanishes

as At + O. Therefore, p, which is bounded above by sums of such

terms, is also of order e(At). This means that we can make p as

small as we please by choosing a small enough At; the criterion for

quadratic convergence can be satisfied in this manner for an arbi-

trary 40 as long as. a/a is not singular.



9. APPENDIX B

DISCUSSION OF LEVEL II - SUCCESSIVE IMPROVEMENT STEPS IN STATE SPACE

At this stage, the general problem given in Section 2.1 has been

divided into a series of "short" sub-problems by imposing mesh

points, and solutions to these short sub-problems have presumably

been attained. It has been shown that J depends on mesh point co-

ordinates only, the gradient of J in X has been derived, and
pp

the "Necessary Conditions" for unconstrained mesh points and for

simple constraints have been developed.

9.1 Kuhn-Tucker Necessary Conditions

The celebrated Kuhn-Tucker conditions would apply in the pres-

ence of more general constraints on X See pages 17-34 of refer-

ence 45 for a complete discussion. Let the equality-constraint man-

ifolds be described as follows:

Ok i= xlhjk(x) O, j = nk} (1)

where

k = 0, 1 ' K + 1 (2)

Similarly, the inequality constraint may be described as

r= {lgi() > 0, i = 1 *- m} (3)

- 147 -
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Briefly, the first order Kuhn-Tucker condition states that J is

minimized when no feasible perturbation of X will bring about a
PP

lower value.

Geometrically, this means that V J must lie within the cone

formed by (a) the gradients to the equality-constraint surfaces,

VXhjk(X), and (b) the gradients to the binding inequalities,

VXgb (X), (where bE B, the set of values of all binding constraints).

Algebraically, for VXJ to lie within the above described cone,

it must be expressible as a linear combination of the gradients to

the equality and binding inequality surfaces, i.e.,

K+l nk

V / ! %bVxgb(X) - L/ L / jkV hjk(X) (4)

b B k=0 j=l

;Here Ai and pjk are "generalized" Lagrange multipliers, respec-
i jk

tively associated with the inequality and equality relations. The

inequality multipliers Xi satisfy the further condition that

Xi ' 0 if gi(X) = 0 (constraint binding) (5)

and

Xi = 0 if gi(X) > 0 (not binding) (6)

Conditions (1) to (6) above, together with a certain regularity as-

sumption (the so-called First Order Constraint Qualification, c.f.,

p. 19 of ref. 45) comprise the Kuhn-Tucker Necessity Theorem.

9.2 Descent Via First-Order Gradient Steps

The "gradient" techniques described (e.g.) in reference 81 have

the desirable traits of being conceptually simple, straight forward,
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and easy to apply. Unfortunately, initial numerical examples (c.f.,

Section 4.1) displayed unexpectedly poor initial rates of conver-

gence, especially when a large number of mesh points was used. In-

vestigation showed that this is due to the extreme slopes or curva-

tures, which tend to develop near a fixed point, having a dispropor-

tionate effect on the value of the criterion J. This, in turn

sharply limits the step size that can be taken.

These considerations suggest that descent directions which van-

ish at the fixed points and which are in some sense as "smooth" as

possible, may yield better computational results. Such a direction

would allow points far from a fixed terminal to be moved through a

relatively large displacement, while those closer to a fixed point

are limited to small displacements. In the next section, we derive

a direction §, having this quality, as a solution of a variational

problem.

9.2.1 Auxiliary Variational Problem

Minimize

stfin) s (n)dt where (n) = d ) (1)

. •tl (1)dt

subject to the boundary conditions

s(ti) = 0, i = 0,1,2, '' K (2)

and the isoperimetric constraint

tf

s A* = constant < 0 (3)
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Equation (1) guarantees that s will be maximally smooth to order

n; (2) results in the automatic satisfaction of the fixed point

boundary values, and (3) guarantees s to be a direction of descent

and provides a common basis for comparing different directions. (Al-

though the problem is formulated for continuous time, with Ap(t)

as defined as in Section 3.2, the formulation and results also apply

to the discrete case, i.e., by defining Ap for Eq. (3) to to be an

impulse function - 6(t - tk)). Introducing the multiplier A and

-writing

+ +n(n) +n+F(s,s ) ) = (n) + 2Xs - At (4)

the Euler-Lagrange equations for this problem become

F + (_l) j. d IF =0 (5)

and, in case n > 1, the "natural boundary conditions" (refs. 53 and

173)

8a __ --tJ- (isa(n1)) 0 (6)
a0 tf

apply for j = 0, 1, ', n - 2. In terms of the problem at hand,

conditions (5) and (6) become
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n+(2n) 
(-1)nS =- A~

s(tO ) = s(tf) = O

s(n) (t
0
o) = (n)(tf) = 0

(n+l) (t) = s(n+l)(tf) = 0

+(2n-2) -*(2n-2) + 2n= °
s (t0 ) = s (tf) = 0

(7)

Thus, we finally obtain s as a polynominal in t, augmented by a

2n-fold quadrature.

It is of interest to verify that the step s thus defined is

indeed a direction of descent. Consider the inner product

tf
2 t

p =A X s A dt

to2 
t

tf
~2 + * (2n)= x s (-1)

n
dt

to
t
f

= 2 (-1)(2n-2) tf

tf

+ ( 2 )+(2 n-3 ) tO - .... + (-l)n tf (n) -*(n)dt

o

(8)
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Here again the boundary terms vanish, because of (21) and the inte-

grand is positive definite wherever Ad # O. Hence, by appropriate

choice of the sign of A we can always achieve that p < 0 (if

A # 0), i.e., s is a direction of descent. Therefore, the theorem

in Section 3.2.3 implies the eventual convergence of the following.

9.2.2 Linear Step Algorithm

(a) xo(t) = feasible, but otherwise arbitrary initial guess

(b) A'j(t) = as defined in Section 3.2.2

(c) sj(t) = solution of Eqs. (5) to (7) above with IAl = 1

(d) Aj = chosen to minimize J(X (t) + Asj(t))

(e) xj+l(t) =xj(t) + jsj(t)

(f) pj = as defined by Eq. (8) above

(g) Iterate (b) - (f) until the estimated decrement reaches a

satisfactorily small magnitude, i. e., 0 < Ipjl < s

9.2.3 Ultimate Convergence Rates

Under the conditions applicable in this section, the theorem in

Section 3.2.3 implies the ultimate convergence of the preceding al-

gorithm. It remains to examine its rate ofultimate convergence. To

do this, note that the recurrence relation s kn)= A k may be

written as

-(2n) X
I

+ XSk) + a ( x
k
- )(j+l)

Sk+l A || (Xk + k) (s) k 

+ ah _4 A x
+_-g x k + A sk), k + s;t (1)X~kXk

t
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+*( 2n)That is, Sk+l may be written as a composite function q which

-t- -> -*(J+l)
depends on sk sk,) alone. That is

-*(2n) -t'. 4 -+(J) j-(J+15\ (2)
Sk+l q k'sk ,sk .... k 'Sk /

This shows that the present algorithm is formally equivalent to

Picard iteration. The convergence rate may be exhibited by subtrac-

ting the kth such equation from the k + 1th:

+(2n) -* (2n ) .... =J)s s q S -
k+l - k k / Sk . k -q k-

(3)

If it is now assumed that the composite function q is continuously

+t ; -t(J+l)
differentiable with respect to its arguments s, s, .... s , the

mean value theorem for derivatives may be used to show that

-*(2n) (2n) = _ k k 
kSl k ~ -DSk+1

Ds
s k k-l

as

+ ....+ '~ -t(J+s 
-+(J+l))

(4)

Now define

Vk+l = Sk+l - sk

then

Vk+l = k + -- * vk + *- + + (J+l) vkJ+
Now 2n integrations slead to

Now 2n integrations lead to

(5)

(6)

.(J.
sk-~
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b

Vk+l -- d12s 0 + ...vk+1 '~ - Vk
0 as0

Next, applying the mean value thus for

b

=+ ~~ Vk dt2n +
Vk+l 

as 0

b

2: %- 2n
= 4. · Vk dt +

as 0

Vk dt 2n
as

(7)

integrals yields

b

as k

+ dt2n
as~r·1S v k +...

71J

sb

. d2n-1
vk t

+ (Jl)
a~(J+l)

k dt
2 n - J -1

vk a (8)

Finally, by taking magnitudes, using the triangle inequality and

properties of the scalar product, and applying the maximum operation

yields the result that

mak+1 max 2n- maxvk + (2) max 
+

xvk+*2n. k- (2n-1)' 'IvkI + 

_il ( 2 n - J- 1

.... + max a b
-J+1 (2n-J-1)!as

(9)

J+l

max IVk+1 1 < max IVkI'-

t QC tt e~ Z=O

maxz b2n-k

I a ( ) (2n-) !as

That is,

(10)
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Therefore, assuming that 2n > J + 1 and that q is sufficiently

differentiable, it has been shown that the present algorithm will

converge at least geometrically if the interval b = tf - to is

chosen small enough. The result may be extended to longer intervals

by partitioning into I sub-intervals and then extending the maximum

operation to include the stipulation that i < 1 • I.

9.3 The Hessian Matrix and Descent Via Second-Order Steps

After having selected a set of mesh points xk and performing

the point-point transfers as in Section 3.1, the following informa-

tion is available at the beginning and end of each arc:

(a) The values of 9(t) and AM(t)

(b) The matrices A = B (t) , C =and
ax(tk) (tk

) (t k)

D= - (t)

a(tk)

(c) And of course the values of x(t) itself

This same data that was generated in the process of computing the in-

dividual two-point transfers can also be used to define a second-

order improvement step, y(t), with the following properties:

(a) The direction

Y = [Yl YK]

is a direction of descent in R
KN

(b) The sequence xj(t) + yj(t) converges quadratically to

x ot(t) for sufficiently large j and if

maxl xo(t) - xopt(t)| is suitably small.
t
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9.3.1 The Hessian

As in Section 3.1, the perturbation equations may be written

k+l ] k (1)

or

l] [ _k LYk++2 (2)

where

- B-1 - =-1k Bkk, Fk=Bk

(3)

Gk = [C -DB'A]k and H
k

= DkBk

Applying this at the beginning and end of each subarc we see that,

for the x0 - xl transfer,

= E0YO +Oy

=+ + (4a)

1 = GOYO * HoYl

Similarly, for the xl - x2 transfer,

= ElY + FlY2

=t~+ , +(4b)
2 Glyl + HlY2

after which,

=2 = E2Y2 + F2Y3

>+3 2+ +3 (4c)
3= G2Y2 + H2Y3

and, so forth, until finally, for the K to K + 1 transfer we have
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To first order in small

RKN may be expressed as

~K = EKYK + FKyK+l

qK+1 t GkYK + HKYK+1

quantities, the perturbed gradient T in

Therefore, YK must be c

subtracting Eqs. (4a) fr

that

_ + ·

j 1 . 1

A + AT =

AK + A* K

chosen so that A K

rom (4b), (4c) from

(5)

1
= AK, 1 < k < K. By

(4d), etc., it is seen

- A 1 = A 1 11- G OY + (E1 - HO)y + F1 2

(6)

- AK = A*K K= - qK = GKlYK_1 + (EK - HK_) K + FKYK+

Since yO = YK+ = 0 by definition, this set of

written in matrix form as

9E - -H
2

F 3

-G E-F2 

I2 _3 _ 2 3

-GK-2 EK-l HK_-2 FK-1.

-K-1 1 K K-l

equations may be

_ _
I

Y

K

Y2

YK

IA;~
1

A#2

A*K

4d)

(7)

<>
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or, more compactly

KY = - T (8)

where K is the KN x KN, block-tridiagonal Hessian matrix indica-

ted above and Y and T are as previously defined. Thus, if K

is non-singular the solution

Y = - K 1 (9)

may in principle be computed immediately. since the A 's and the

elements of K are defined in terms of the preceding trajectory.

9.3.2 Quadratic Step Algorithm

(a) The initial mesh, Xk,0, is arbitrary, but feasible

(b) The mesh xki is defined at the beginning of iteration

number i. Compute the optimal sub-transfers per Level I.

(c) Using the AV's and sub-matrices thus defined, form Y,

K, and then solve for the mesh-point perturbation vector

Y

(d) Convergence is attained if PIj is sufficiently small. If

so, stop; otherwise continue

(e) Define the i + 1
t h mesh as

Xk,i+l Xk,i Yk,i 1 < k < K

and also estimate initial T's for the next set of 2-point

sub-problems, i.e., (tk) ( tk) +0 k < K + 1
i+l 1 i

by evaluating Eq. (2). Repeat (b) - (e) as necessary.

9.3.3 Convergence

Ultimate convergence may be most easily studied in terms of an

auxiliary function, which is here taken as I12. The gradient of
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this function is

V Y2 = IT IFTKg (1)

But the search direction is Y = - K T, hence

VXIT 12 · Y = - TK K-1 < (2)

so that Y is indeed a direction of descent for |I|2 Thus, ultim-

ate convergence (to iy12 _ 0) is implied by Section 3.2.3 provided

that K and its component parts are well defined and non-singular.

Indeed, it can be shown that IT2 - 0 quadratically for n

large enough. Consider the recursion formula:

(BY) -y Y= T _lYN my=( ) O(3)~n+l : Yn - ( nYN : Kn - N (n(

Expand O(yn) in Maclaurin series -

r-- 1 T O +2V V n (4)

(P('Y,) = \ L aYO _J_ 22~'n

But

=O0 (5)
TY=0

Hence

T1= LAeT T n (6)n+l n 2 n

or, again we have quadratic convergence

IT +14 ' I| Kn 2 (7)

where
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_ max f max 1 T 2 
(
e)

i,e \YI 2 3 02 y,/

The convergence of IYTI to zero could imply a maximum as well as a

minimum, value of J. For a minimum to occur, the matrix

K = ~- (9)

must be positive definite, and then the estimated decrement in J is

T T
AJ = Y * = - Y KY (10)

as long as JYI & 0. In other words, convergence is not only quadra-

tic, but monotonic.

9.4 Descent Via Fletcher-Powell Algorithm

This may be accomplished, for example, with a modified Fletcher-

Powell routine. That is, successive directions of descent sn are

defined in X by the formula
PP

Sn+l Ln6 n (1)

where Ln is an appropriately dimensioned positive matrix defined

by the recursion

+ +T T
on * a (L )(L T

Ln+
1
=L + n n n (2)

n+l n +T+
Cnnn n( n )

where the change in position is

O =x -x
n n n-l

and the change in the gradient is

=n = n - n-l
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The successive step-lengths, an, are predicted from the second-

partial data instead of being determined by unidimensional search-

ing. Expanding Jn+l to second order in Sx yields

Jn1 J ++ An6x 6xTK 6' (3)n+l Jn + n 2 n n (3)

Replacing 6x by a s, equating aJ/aa to zero and solving for
n nn n

an leads to a predicted step length

ATE
Ap s
nn

a =T + (4)
sKs
nnn

which (to second order) will minimize Jn+l along the s -direction.
n+1 n

To summarize, the preceding descent algorithm in X consists of
pp

the following steps:

(a) L0 = arbitrary positive definite matrix, e.g., L = I

+ +
(b) s

n
= - LnA*n, per (1)

(c) an per (4), or by numerical search if (4) does not, lead to

a reduction of the criterion J.

(d) x = x + a s
n n-X n-l n-l

(e) Ln+l per (2)

Steps (b) - (e) are repeated until an appropriate measure of conver-

gence has been satisfied.

It can be shown that, for this algorithm,

(a) Lim L = K
n n

(b) Lim a = 1; and
nn-4

(c) Convergence is quadratic.

See references 48, 49, and 68 for further discussion of this algorithm.



10. APPENDIX C

AN ANALYTICAL APPROXIMATION TO THE FUNDAMENTAL MATRIX FOR
SPACE TRAJECTORIES

For the purpose of this section, let the vectors v 1 , v 2, v
3

,

and v4 denote theunit solutions of Eq. 4.4(10); i.e,, they are

the column vectors that comprise I, and their individual component

equations for column i (where 1 < i < 4) are

vli = v2i

4. 21 2
V2i - 2(t)vi + ' 4i

~V @2(t)9 ' > ' (1)+ 2 -+

3i= W (t)v4i

V4i v3i

with

vji(tk) = 6ji

In second order form:

.- 24.
v4i = (- t) (2)

Vli =-2(t)vl i + +(3)
Vii = 

If w were constant, the above equations would yield harmonic solu-

ions. These, however, are quite inaccurate except for trajectories

involving only a small variation of radius (and hence, w).

- 162 -
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On the other hand, Eqs. (2) and (3)

for a special, but more general, form of

exactly match the "real" function at the

other two points) of the subarc.

That is, let

can be solved analytically

w(t) which can be made to

beginning and end (or any

0 = K,
2

tk.k

assuming for convenience that

we find that

a constant

= Kt 
t

k+l

tk

tk =0, w(

(4)

P) 
=
wO, and w(tk+ )k+1

1 1
K = t1 I

WO t k+l ftk+l

,.t(> 1 (51

( ) 1 t' i1 + 

m0 tk+l f o

where t' = t - t is the elapsed time since the beginning of the

subarc.

A change of variable. - Now consider the transformation defined

by t' + z, where z = m. Hence,

d( )= d( )(6)
Tt- o-;r; ~~~(6)

dt - -

and

d2( ) 2 d2( dd d( )
= Wm -+W-A -2 2 + dz dzd

dt d.dz 

hence

or,

Wf

or

· ·
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Thus, the substitution t -+ z reduces (2) to the form

"
4

+ W'/W v +v 0 (7)
v4i + ~'/m ~4i + 94i

But, since w' / = ;/w2 = K where K is a constant (c.f., Eqs. (4)

and (5)) Eq. (7) reduces to harmonic form

, I(8)
"4i + KV4i + 4i 0

The homogeneous solution. - The solution of (8) is well known

to be either

Kz
2

v4i = e [A sin T + Bi Cos T] (9a)

if IKj < 2, or

_ Kz

v4i = e [Ai sinh T + Bi cosh T]

IKI > 2

(9b)

where

T = I - 4 z = az (10)

The oscillatory solution (9a)

Since K was defined as

K =

(where tf = tk+l - tk ) it is

small if t' is large. That

will be seen tco be of primary interest.

1 1

0otf wftf

clear that IKI will, in general, be

is, if

if
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tf '12 (1)

we need never consider (9b). For trips from the-Earth inwards,

0 = 1 and wf> 1, So that (28) is always satisfied easily. That

is, we need tf > - of the Earth's Schuler period (about 29 days)

if we are going to 0 A.U.'s (w ) For outward transfers, the

final angular velocity wf can become very small, and we must con-

sider that tf increases in proportion to the period of the final

orbit. This does not seem an unreasonable assumption -however,

condition (11) should be verified numerically when "fast" outer-

planet trips are being considered. But, for the present we will

only consider solution (9a).

The transformed argument. - In order to work with Eq. (9), in

either of its forms, we need to know z as a function of t and

X as a function of z (as well as t). First, let us integrate

Eq. (6), i.e.,
pt

z(t) W= CA (t)dt (12a)

i.e.,

t
f Iz = -v--- g (12b)

or

Kz
CL w eR0 w
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The inhomogeneous solution. - By applying the same transforma-

tion to Eq. (3) we obtain

vii + Kvi + V i (14)ii ii i 2 4 i

where v4i is the homogeneous solution given in (9) above. First,

the complimentary solution of (14) is of the same form as (9) namely

Vli(z) = exp (-Kz [Ci sin T + Di COS T] (15a)
complimentary

Using the method of variation of parameters we try a particular

solution of the form

Vli(Z) = exp [U(z) sin T + V(z) cos T] (15b)

After some tedious but straight-forward calculations it is found that

U(z) and V(z) must satisfy the auxiliary differential equations

V' sin T + U' cos T =0.Oi i

ck - i ' kAi Bi
i 2 COS Ts[ n -o - sin |r -+ COS T

- W

(16)

which leads to the result that

(z= 2 Ai (-2Kz -K in 2T - a cos 2T
V i(z) a7 2 Ai F 2+2)

aw0L 4(K + aK

+ Bi -2Kz -2K cos T +2a sin ae
4(K +.a2) 4(K a)2

(17)
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and

U(z) =-1
aw0

(e-2Kz
( -4K

-2Kz
e'2 2 [- K cos 2Y + a sin 2 T]

4(K + a )

Then, putting (17) and

ary solution (15a) and

+ B (Kz [K sin 2T - a cos 2(18)

(18) back into (15b), adding the compliment-

simplifying we finally obtain

5Kz

e Kz Ci sin + Di COS (19)

This together with the homogeneous solution (9) represents the gen-

eral solution for one column of $.

The typical column may be written as

li
VI

li

Vi =

4i

with the constants A. .... D. chosen so
so that

so that

(20)

that 4(t0;t0 ) = I; i.e.,

Vij(to ) = 6ij(ij 0 . ii (21)
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Define auxiliary functions fl, f2', f6 ; g 4 and h...

follows.

5Kz

f e
1 22 2

4w0[K + a

5Kz

-5Ke

+ a
2
]

f2 = sin T + - cos T2 K
2
a

f = a cos T - - sin T
2 K

a
f3 = cos T - K sin T

2 (22)
a

fV = -a sin T - cos T..

Kz

Kz
-K 2

f = 2e

f5 = sin Tr

f' = a cos T
5

f cos T

f6 = -a sin T

gl = flf2

g2 = flf3 (23)
(23)

g3 = f4f5

g4 = f4f6
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hl = gl = flf 2 + ff2

2= g, = flf; + ff (h2 g2 ff3 f 3
I (24)

h3 = g3 = f4f5 +f4f5

h4 = g4 = f4 f6 + f4f6

Using these functions vi may be written as

Oli ' glAi g 2 Bi g3Ci g4Di.

vi J li h3 3lAi hh4Di
Vi ~= -(25)

i 4i -h3A
i

-h h4Bi 0 0

¢4i g3Ai g4Bi O °

which may be solved to yield

A g1 g
2 g

3 g4

h1 =h 2 Wh3 h 2i

(26)
C -wh h4 0 0 V3i

3 4

D g3 g4 04i

provided that the inverse indicated in Eq. (26)exists.

That the inverse does exist is readily shown by computing the de-
terminant; i.e.,

= -3 g4 i~h3 1 4 f 2 

2 -2Kz 2
= - a e = -a when z = 0

Since a = 1 - K2/4 we may rely on the same assumption (IKI < 2) by

which we selected the oscillatory solution (20a) for further analysis.
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The general algebraic form of (25) evaluated at the initial

point z = 0, may be written as

a 1
ii 2 22 21 22 2 1

4Kw0 K + a 4Kw[K+ +a]
Oli--_L T _-

5 a
2

I
6 = -3aw -2 K'- a -Kw

2i 2 2 2 22 2 a B
8w[K +a 4w [K + a2

3i 2o c

6
4i | 0 1 (0 0 D.

The solution of (27) is

Bi=

Ai =

Di=

6 4i
L 6 - -6

2a 4i aw 3i

3. ' 1

2 64i - 63i
li 4w2[K2 + a2 ]

0

(

(27)

28a)

and

i =1 K: 6 +
i 2aw 62i 2a i

4am[K 2+ a2] 63i -K116 - a
4aw~[K2 + a2] 3 4 K

It is also of interest to compute the values of A..... D.
1 · 1

appropriate for an impulsive-thrust solution (i.e., B = 0

(3)). Following the procedure shown above, it is readily

when B = 0, we have

i 2a 4i a 63i 

B
i = 64i

6

2i K 6i
Ci =2aw 2a

Di 611i

that are

in Eq.

seen that,

(28b)

+ 4) 642
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Analytical form of the fundamental matrix. - We have now seen

that each of the 4 column vectors v
i

(i = 1.... 4) composing

(z;?z0) may be written as

li .gl g2 g3 g4 A i

V2 i = hl Wh2 mh3 Wh4 Bi

(29a)

3i -h 3 -h 4 0 i

g 3 g4 9 D
_4i,_...3 g4 ° 0 D1 (i=1...4)

Here the 16 constants Ai ....Di are evaluated by applying the Eqs.

(22) through (28) successively for i = 1.,,4. The' auxiliary func-

tions gj and hj (j = 1...4) are determined by evaluating Eqs.

(23) and (24:

,(z;zo ) =

Or, renaming

) at the

g1 (z)

whi (z)

-wh1(z)

g3(Z)

the abov

time of interest.

g2(Z) g3 (z)

Ih2(z) 0h3(z)

-wh4(z) 0

g4 (z)

e

0

sets of functions

G = [gik]

That is,

g4 (Z) AA A
2

A3 A4

wh4(Z) B 1 B2 B3 B4

°0 I-C1 C2 C
3

C4

0 D D D D2 3 4

(29b)
and cOnst-ants as

and

C = [ckj]

we may write
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D(z;z0) = GC

so that

ij(Z; zO) - gik kj

Summary of subarc computations. - (a) Compute the auxiliary

function w(t) and K (Eq. (5)); z and w(z)(Eq. (12)); a and T

(Eq. (10)). (b) Evaluate Eqs. (22) through (29) at z = 0 to find

the 16 constants Ai...Di (i = 1,...4) and the 16 components of the

fundamental matrix 0. (c) Partition $ onto the A, B, C, and D

blocks as in Chapter 3 and, using the given value of B together

with the elements of these blocks, solve Eqs. 4.4.1(15) and

4.4.1(13). (d) Equation 4.4.1(11) may be evaluated at intermediate

times, tk < t < tk+l to obtain a picture of the state and adjoint

trajectory. (e) Numerically compute

1 j2 (J4 + + ) dz
JI5 W(z)

0naltia cz

Analytical computation of J. - As an alternative to numerical

integration, it is possible to directly compute that (e.g.)

pl (Z) = Alg3(z) + Blg4 (z) (30)

where

A1 AlXO + A2vO + A3X1, 0 + A4l1 ,

(31)

B1 = BlX0 + B2VO + B3X1,0 + B41,0
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There are similar expressions for P2 and p3* Note, however that

although the same functions g3(z) and g4(z) are used for the U's,

the constants (31) are in general different. Hence, let us rewrite

(30) and (31) as

Pj(z) = Ajg 3(z) + Bj(z)g4(z)

where

A.
J

= A1x j
( 0) + A2vj ( 0) + A3Xj

( 0) + A4
j
( 0 )

and

B.
J
= B

1
Xj

( 0) + B2vj ( 0) + B3Xj
(0) + B4vj (0)

Thus,

for j = 1.

7-\
j = Li1

\1

2

...3,

AJ

*22 *
= Aj g3 (z) + 2AjB g3 (z)g4(z)

so that J is defined by

f g3(z)

j=l

*2 2
+ Bj g4 (z)

f3(

(g3
/0

(32)

z)g4(z) dz

1

zzf 2(z) dz

g4(z) 7J0

(33)

The integrals in (33) are

Zf -2Kz 2
I1 =. e sin2 (az)dz

d0 w0

JZf -2Kz

I2 = e sin(az)cos(az)dz,
0�0 

(34)

(Eq. (34) continued on next page)
and
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Z e-2Kz

03 = 0zf

Using the table of integrals, reference 135, these work out to be

-2Kz
-e

1 = 4K +

0

-2Kz

4K+ 4a (K cos
(4K + 4a2)

~
(2az) - a sin (2az))

12 = e-2kz (

-2 e 2 Kz

(4K + 4a ) 0

- K sin (2az) - a xos (2az)

{cs\ a(4K2 + 4a 2)0

{cos az(-aK cos az + 2a sin az)}

cos axdz (34)

(35)

(36)

(37)

\ !


